ترغب بنشر مسار تعليمي؟ اضغط هنا

Seeding the Second Star: enrichment from population III, dust evolution, and cloud collapse

90   0   0.0 ( 0 )
 نشر من قبل Gen Chiaki
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the formation of extremely metal-poor (EMP) stars that are observed in the Galactic halo and neighboring ultra-faint dwarf galaxies. Their low metal abundances (${rm [Fe/H]} < -3$) indicate that their parent clouds were enriched by a single or several supernovae (SNe) from the first (Pop III) stars. In this study, we perform numerical simulations of the entire formation sequence of a EMP star through the feedback effects of photo-ionization and metal-enrichment by a Pop III SN. We for the first time employ a metal/dust properties calculated consistently with the progenitor model, and solve all relevant radiative cooling processes and chemical reactions including metal molecular formation and grain growth until the protostar formation. In a minihalo (MH) with mass $1.77times 10^{6} {rm M}_{bigodot}$, a Pop III star with mass $13 {rm M}_{bigodot}$ forms at redshift $z=12.1$. After its SN explosion, the shocked gas falls back into the central MH internally enriching itself. The metallicity in the recollapsing region is $2.6times 10^{-4} {rm Z}_{bigodot}$ (${rm [Fe/H]} = -3.42$). The recollapsing cloud undergoes cooling by HD, CO, and OH molecules and heating along with H$_2$ formation. Eventually by grain growth and dust cooling, knotty filaments appear in the central 100 au region with the help of turbulence driven by the SN, leading to the formation of low-mass EMP stars surviving until the present day.

قيم البحث

اقرأ أيضاً

It is widely recognized that nucleosynthetic output of the first, Population III supernovae was a catalyst defining the character of subsequent stellar generations. Most of the work on the earliest enrichment was carried out assuming that the first s tars were extremely massive and that the associated supernovae were unusually energetic, enough to completely unbind the baryons in the host cosmic minihalo and disperse the synthesized metals into the intergalactic medium. Recent work, however, suggests that the first stars may in fact have been somewhat less massive, with a characteristic mass scale of a few tens of solar masses. We present a cosmological simulation following the transport of the metals synthesized in a Population III supernova assuming that it had an energy of 1e51 ergs, compatible with standard Type II supernovae. A young supernova remnant is inserted in the first stars relic HII region in the free expansion phase and is followed for 40 Myr employing adaptive mesh refinement and Lagrangian tracer particle techniques. The supernova remnant remains partially trapped within the minihalo and the thin snowplow shell develops pronounced instability and fingering. Roughly half of the ejecta turn around and fall back toward the center of the halo, with 1% of the ejecta reaching the center in 30 kyr and 10% in 10 Myr. The average metallicity of the combined returning ejecta and the pristine filaments feeding into the halo center from the cosmic web is 0.001 - 0.01 Z_sun, but the two remain unmixed until accreting onto the central hydrostatic core that is unresolved at the end of the simulation. We conclude that if Population III stars had less extreme masses, they promptly enriched the host minihalos with metals and triggered Population II star formation.
Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generati on of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses $M_{rm PopIII} = 13$--$80 {rm M}_{bigodot}$, which yield C-enhanced abundance patterns (${rm [C/Fe]} = 4.57$--$4.75$) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud $A({rm C}) = 3.80$--$5.06$ is lower than the abundance range of observed CEMP stars ($A({rm C}) gtrsim 6$) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $M_{rm PopIII} = 13 {rm M}_{bigodot}$ even with the lowest iron abundance ${rm [Fe/H]} sim -9$. This leads to the formation of low-mass stars, and these ``giga metal-poor stars can survive until the present-day Universe and may be found by future observations.
We use cosmological simulations to assess how the explosion of the first stars in supernovae (SNe) influences early cosmic history. Specifically, we investigate the impact by SNe on the host systems for Population~III (Pop~III) star formation and exp lore its dependence on halo environment and Pop~III progenitor mass. We then trace the evolution of the enriched gas until conditions are met to trigger second-generation star formation. To this extent, we quantify the recovery timescale, which measures the time delay between a Pop~III SN explosion and the appearance of cold, dense gas, out of which second-generation stars can form. We find that this timescale is highly sensitive to the Pop~III progenitor mass, and less so to the halo environment. For more massive progenitors, including those exploding in pair instability SNe, second-generation star formation is delayed significantly, for up to a Hubble time. The dependence of the recovery time on the mass of the SN progenitor is mainly due to the ionizing impact of the progenitor star. Photoionization heating increases the gas pressure and initiates a hydrodynamical response that reduces the central gas density, an effect that is stronger in more massive. The gas around lower mass Pop~III stars remains denser and hence the SN remnants cool more rapidly, facilitating the subsequent re-condensation of the gas and formation of a second generation of stars. In most cases, the second-generation stars are already metal-enriched to ~2-5 X 10^{-4}zsun, thus belonging to Population~II. The recovery timescale is a key quantity governing the nature of the first galaxies, able to host low-mass, long-lived stellar systems. These in turn are the target of future deep-field campaigns with the James Webb Space Telescope.
The presence of short-lived radioisotopes (SLRs) in solar system meteorites has been interpreted as evidence that the solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR inject ion into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size (> 1 micron) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.
We use Hubble Space Telescope (HST) observations of red clump stars taken as part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE) program to measure the average dust extinction curve in a ~ 200 pc x 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). The rich information provided by our 8-band ultra-violet through near-infrared photometry allows us to model the color-magnitude diagram of the red clump accounting for the extinction curve shape, a log-normal distribution of $A_{V}$, and the depth of the stellar distribution along the line of sight. We measure an extinction curve with $R_{475} = A_{475}/(A_{475}-A_{814})$ = 2.65 $pm$ 0.11. This measurement is significantly larger than the equivalent values of published Milky Way $R_{V}$ = 3.1 ($R_{475} = 1.83$) and SMC Bar $R_{V}$ = 2.74 ($R_{475} = 1.86$) extinction curves. Similar extinction curve offsets in the Large Magellanic Cloud (LMC) have been interpreted as the effect of large dust grains. We demonstrate that the line-of-sight depth of the SMC (and LMC) introduces an apparent gray contribution to the extinction curve inferred from the morphology of the red clump. We show that no gray dust component is needed to explain extinction curve measurements when a full-width half-max depth of 10 $pm$ 2 kpc in the stellar distribution of the SMC (5 $pm$ 1 kpc for the LMC) is considered, which agrees with recent studies of Magellanic Cloud stellar structure. The results of our work demonstrate the power of broad-band HST imaging for simultaneously constraining dust and galactic structure outside the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا