ﻻ يوجد ملخص باللغة العربية
Iron-based superconductors can be categorized as two types of parent compounds by considering the nature of their temperature-induced phase transitions; namely, first order transitions for 122- and 11-type compounds and second-order transitions for 1111-type compounds. This work examines the structural and magnetic transitions (ST and MT) of CaFeAsH by specific heat, X-ray diffraction, neutron diffraction, and electrical resistivity measurements. Heat capacity measurements revealed a second-order phase transition accompanies an apparent single peak at 96 K. However, a clear ST from the tetragonal to orthorhombic phase and a MT from the paramagnetic to antiferromagnetic phase were detected. The structural (Ts) and Neel temperatures (TN) were respectively determined to be 95(2) and 96 K by X-ray and neutron diffraction and resistivity measurements. This small temperature difference, Ts - TN, was attributed to strong magnetic coupling in the inter-layer direction owing to CaFeAsH having the shortest lattice constant c among parent 1111-type iron arsenides. Considering that a first-order transition takes place in 11- and 122-type compounds with a short inter-layer distance, we conclude that the nature of the ST and MT in CaFeAsH is intermediate in character, between the second-order transition for 1111-type compounds and the first-order transition for other 11- and 122-type compounds.
We show that the zero field normal-state resistivity above Tc for various levels of electron doping - both for LaO1-xFxFeAs (La-1111) and SmO1-xFxFeAs (Sm-1111) members of the 1111-iron-pnictide superconductor family - can be scaled in a broad temper
Co-doped BaFe2As2 has been previously shown to have an unusually significant improvement of Tc (up to 2 K, or almost 10%) with annealing 1-2 weeks at 700 or 800 C, where such annealing conditions are insufficient to allow significant atomic diffusion
The structural flexibility at three substitution sites in LaFeAsO enabled investigation of the relation between superconductivity and structural parameters over a wide range of crystal compositions. Substitutions of Nd for La, Sb or P for As, and F o
Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determin
The surface terminations of 122-type alkaline earth metal iron pnictides AEFe2As2 (AE = Ca, Ba) are investigated with scanning tunneling microscopy/spectroscopy (STM/STS). Cleaving these crystals at a cryogenic temperature yields a large majority of