ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition in CaFeAsH: bridging 1111 and 122 iron-based superconductors

149   0   0.0 ( 0 )
 نشر من قبل Yoshinori Muraba
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron-based superconductors can be categorized as two types of parent compounds by considering the nature of their temperature-induced phase transitions; namely, first order transitions for 122- and 11-type compounds and second-order transitions for 1111-type compounds. This work examines the structural and magnetic transitions (ST and MT) of CaFeAsH by specific heat, X-ray diffraction, neutron diffraction, and electrical resistivity measurements. Heat capacity measurements revealed a second-order phase transition accompanies an apparent single peak at 96 K. However, a clear ST from the tetragonal to orthorhombic phase and a MT from the paramagnetic to antiferromagnetic phase were detected. The structural (Ts) and Neel temperatures (TN) were respectively determined to be 95(2) and 96 K by X-ray and neutron diffraction and resistivity measurements. This small temperature difference, Ts - TN, was attributed to strong magnetic coupling in the inter-layer direction owing to CaFeAsH having the shortest lattice constant c among parent 1111-type iron arsenides. Considering that a first-order transition takes place in 11- and 122-type compounds with a short inter-layer distance, we conclude that the nature of the ST and MT in CaFeAsH is intermediate in character, between the second-order transition for 1111-type compounds and the first-order transition for other 11- and 122-type compounds.



قيم البحث

اقرأ أيضاً

We show that the zero field normal-state resistivity above Tc for various levels of electron doping - both for LaO1-xFxFeAs (La-1111) and SmO1-xFxFeAs (Sm-1111) members of the 1111-iron-pnictide superconductor family - can be scaled in a broad temper ature range from 20 to 300 K onto single curves for underdoped La-1111 (x=0.05-0.075), for optimally and overdoped La-1111 (x=0.1-0.2) and for underdoped Sm-1111 (x=0.06-0.1) compounds. The scaling was performed using the energy scale {Delta}, the resistivity {rho}_{Delta} and the residual resistivity {rho}_0 as scaling parameters as well as by applying a recently proposed model-independent scaling method (H. G. Luo, Y. H. Su, and T. Xiang, Phys. Rev. B 77, 014529 (2008)). The scaling parameters have been calculated and the compositional variation of {Delta} has been determined. The observed scaling behaviour for {rho}(T) is interpreted as an indication of a common mechanism which dominates the scattering of the charge carriers in underdoped La-1111, in optimally and overdoped La-1111 and in underdoped Sm-1111 compounds..
148 - J. S. Kim , G. N. Tam , 2015
Co-doped BaFe2As2 has been previously shown to have an unusually significant improvement of Tc (up to 2 K, or almost 10%) with annealing 1-2 weeks at 700 or 800 C, where such annealing conditions are insufficient to allow significant atomic diffusion . While confirming similar behavior in optimally Co-doped SrFe2As2 samples, the influence on Tc of strain induced by grinding to ~50 micron sized particles, followed by pressing the powder into a pellet using 10 kbar pressure, was found to increase the annealed transition width of 1.5 K by approximately a factor of ten. Also, the bulk discontinuity in the specific heat at Tc, deltaC, on the same pellet sample was completely suppressed by grinding. This evidence for a strong sensitivity of superconductivity to strain was used to optimize single crystal growth of Co-doped BaFe2As2. This strong dependence (both positive via annealing and negative via grinding) of superconductivity on strain in these two iron based 122 structure superconductors is compared to the unconventional heavy Fermion superconductor UPt3, where grinding is known to completely suppress superconductivity, and to recent reports of strong sensitivity of Tc to damage induced by electron-irradiation-induced point defects in other 122 structure iron-based superconductors, Ba(Fe0.76Ru0.24)2As2 and Ba1-xKxFe2As2. Both the electron irradiation and the introduction of strain by grinding are believed to only introduce non-magnetic defects, and argue for unconventional superconducting pairing.
The structural flexibility at three substitution sites in LaFeAsO enabled investigation of the relation between superconductivity and structural parameters over a wide range of crystal compositions. Substitutions of Nd for La, Sb or P for As, and F o r H for O were performed. All these substitutions modify the local structural parameters, while the F/H-substitution also changes band filling. It was found that the superconducting transition temperature $T_{c}$ is strongly affected by the pnictogen height $h_{Pn}$ from the Fe-plane that controls the electron correlation strength and the size of the $d_{xy}$ hole Fermi surface (FS). With increasing $h_{Pn}$, weak coupling superconductivity switches to the strong coupling one where the $d_{xy}$ hole FS is crucially important.
Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determin ed doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe--Fe distances in the low temperature orthorhombic phase, with the band energies E$_{d_{xz}}$, E$_{d_{yz}}$ of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate $z_{As}$ of $As$ which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe$_2$As$_2$) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.
67 - Ang Li , J.-X. Yin , Jihui Wang 2016
The surface terminations of 122-type alkaline earth metal iron pnictides AEFe2As2 (AE = Ca, Ba) are investigated with scanning tunneling microscopy/spectroscopy (STM/STS). Cleaving these crystals at a cryogenic temperature yields a large majority of terminations with atomically resolved square-root-two (rt2) or 1*2 lattice, as well as the very rare terminations with 1*1 symmetry. By means of lattice alignment and chemical marking, we identify these terminations as rt2-AE, 1*2-As, and rt2-Fe surfaces, respectively. Layer-resolved spectroscopy on these terminating surfaces reveals a well-defined superconducting gap on the As terminations, while the gap features become weaker and absent on AE and Fe terminations respectively. The local gap features are hardly affected by the surface reconstruction on As or AE surface, whereas a suppression of them along with the in-gap states can be induced by As vacancies. The emergence of two impurity resonance peaks at +-2 meV is consistent with the sign-reversal pairing symmetry. The definite identification of surface terminations and their spectroscopic signatures shall provide a more comprehensive understanding of the high-temperature superconductivity in multilayered iron pnictides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا