ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac spinors and their application to Bianchi-I space-times in 5 dimensions

138   0   0.0 ( 0 )
 نشر من قبل Stefano Vignolo Professor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a five-dimensional Einstein--Cartan spacetime upon which Dirac spinor fields can be defined. Dirac spinor fields in five and four dimensions share many features, like the fact that both are described by four-component spinor fields, but they are also characterized by strong differences, like the fact that in five dimensions we do not have the possibility to project on left-handed and right-handed chiral parts unlike what happens in the four-dimensional instance: we conduct a polar decomposition of the spinorial fields, so to highlight all similarities and discrepancies. As an application of spinor fields in five dimensions, we study Bianchi-I spacetimes, verifying whether the Dirac fields in five dimensions can give rise to inflation or dark-energy dominated cosmological eras or not.

قيم البحث

اقرأ أيضاً

We study Dirac spinors in Bianchi type-I cosmological models, within the framework of torsional $f(R)$-gravity. We find four types of results: the resulting dynamic behavior of the universe depends on the particular choice of function $f(R)$; some $f (R)$ models do not isotropize and have no Einstein limit, so that they have no physical significance, whereas for other $f(R)$ models isotropization and Einsteinization occur, and so they are physically acceptable, suggesting that phenomenological arguments may select $f(R)$ models that are physically meaningful; the singularity problem can be avoided, due to the presence of torsion; the general conservation laws holding for $f(R)$-gravity with torsion ensure the preservation of the Hamiltonian constraint, so proving that the initial value problem is well-formulated for these models.
Some cosmological solutions of massive strings are obtained in Bianchi I space-time following the techniques used by Letelier and Stachel. A class of solutions corresponds to string cosmology associated with/without a magnetic field and the other cla ss consists of pure massive strings, obeying the Takabayashi equation of state.
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for Locally Rotationally Symmetric (LRS) Bianchi III metric and open Friedmann-Lema^itre-Roberts on-Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $gamma$ for the Locally Rotationally Symmetric (LRS) Bianchi I and flat Friedmann-Lema^itre-Robertson-Wa lker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averag
175 - Ghulam Shabbir , Amjad Ali 2015
Curvature collineations of Bianchi type IV space-times are investigated using the rank of the 6X6 Riemann matrix and direct integration technique. From the above study it follows that the Bianchi type IV space-times possesses only one case when it ad mits proper curvature collineations. It is shown that proper curvature collineations form an infinite dimensional vector space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا