ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicomponent H2 in DLA at zabs = 2.05: physical conditions through observations and numerical models

123   0   0.0 ( 0 )
 نشر من قبل Katherine Rawlins
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform detailed spectroscopic analysis and numerical modelling of an H2-bearing damped Lyman-alpha absorber (DLA) at zabs = 2.05 towards the quasar FBQS J2340-0053. Metal absorption features arise from fourteen components spread over $Delta v_{90}$ = 114 km s$^{-1}$, seven of which harbour H2. Column densities of atomic and molecular species are derived through Voigt profile analysis of their absorption lines. We measure total N(H I), N(H2) and N(HD) to be 20.35+/-0.05, 17.99+/-0.05 and 14.28+/-0.08 (log cm$^{-2}$) respectively. H2 is detected in the lowest six rotational levels of the ground vibrational state. The DLA has metallicity, Z = 0.3 Z$_sun$ ([S/H] = -0.52+/-0.06) and dust-to-gas ratio, $kappa$ = 0.34+/-0.07. Numerical models of the H2 components are constrained individually to understand the physical structure of the DLA. We conclude that the DLA is subjected to the metagalactic background radiation and cosmic ray ionization rate of $sim$ 10$^{-15.37}$ s$^{-1}$. Dust grains in this DLA are smaller than grains in the Galactic interstellar medium. The inner molecular regions of the H2 components have density, temperature and gas pressure in the range 30-120 cm$^{-3}$, 140-360 K and 7,000-23,000 cm$^{-3}$ K respectively. Micro-turbulent pressure is a significant constituent of the total pressure, and can play an important role in these innermost regions. Our H2 component models enable us to constrain component-wise N(H I), and elemental abundances of sulphur, silicon, iron and carbon. We deduce the line-of-sight thickness of the H2-bearing parts of the DLA to be 7.2 pc.



قيم البحث

اقرأ أيضاً

We present results from a search for strong H2 absorption systems proximate to quasars (zabs~zem) in the Sloan Digital Sky Survey (SDSS) Data Release 14. The search is based on the Lyman-Werner band signature of damped H2 absorption lines without any prior on the associated metal or neutral hydrogen content. This has resulted in the detection of 81 systems with log N(H2)~19-20 located within a few thousand km/s from the quasar. Compared to a control sample of intervening systems, this implies an excess of proximate H2 systems by about a factor of 4 to 5. The incidence of H2 systems increases steeply with decreasing relative velocity, reaching an order of magnitude higher than expected from intervening statistics at Delta_v<1000 km/s. The most striking feature of the proximate systems compared to the intervening ones is the presence of Ly-alpha emission in the core of the associated damped HI absorption line in about half of the sample. This puts constraints on the relative projected sizes of the absorbing clouds to those of the quasar line emitting regions. Using the SDSS spectra, we estimate the HI, metal and dust content of the systems, which are found to have typical metallicities of one tenth Solar, albeit with a large spread among individual systems. We observe trends between the fraction of leaking Ly-alpha emission and the relative absorber-quasar velocity as well as with the excitation of several metal species, similar to what has been seen in metal-selected proximate DLAs. With the help of theoretical HI-H2 transition relations, we show that the presence of H2 helps to break the degeneracy between density and strength of the UV field as main sources of excitation and hence provides unique constraints on the possible origin and location of the absorbing clouds. We suggest that most of these systems originate from galaxies in the quasar group. [truncated]
We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 {mu}m) and high cosmic ray ionisation rate (zeta_H a few times 10^-15 s^-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 A bump. The properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex. The high excitation temperature of CO rotational levels towards J0000+0048 betrays however the higher temperature of the cosmic microwave background. Using the derived physical conditions, we correct for a small contribution (0.3 K) of collisional excitation and obtain TCMB(z = 2.53)~9.6 K, in perfect agreement with the predicted adiabatic cooling of the Universe. [abridged]
350 - Marcel Neeleman 2014
A new method is used to measure the physical conditions of the gas in damped Lyman-alpha systems (DLAs). Using high resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper to lower fine-structure levels of the ground state of C II and Si II. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov Chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5 % of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100 cm-3 and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log(P/k) = 3.4 [K cm-3], which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsec. We show that the majority of the systems are consistent with having densities significantly higher than expected from a purely canonical WNM, indicating that significant quantities of dense gas (i.e. n_H > 0.1 cm-3) are required to match observations. Finally, we identify 8 systems with positive detections of Si II*. These systems have pressures (P/k) in excess of 20000 K cm-3, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.
Mid-infrared (IR) observations of polycyclic aromatic hydrocarbons (PAHs) and molecular hydrogen emission are a potentially powerful tool to derive physical properties of dense environments irradiated by intense UV fields. We present new, spatially r esolved, emph{Spitzer} mid-IR spectroscopy of the high UV-field and dense photodissocation region (PDR) around Monoceros R2, the closest ultracompact hII region, revealing the spatial structure of ionized gas, PAHs and H$_2$ emissions. Using a PDR model and PAH emission feature fitting algorithm, we build a comprehensive picture of the physical conditions prevailing in the region. We show that the combination of the measurement of PAH ionization fraction and of the ratio between the H$_2$ 0-0 S(3) and S(2) line intensities, respectively at 9.7 and 12.3 $mu$m, allows to derive the fundamental parameters driving the PDR: temperature, density and UV radiation field when they fall in the ranges $T = 250-1500 $K, $n_H=10^4-10^6$cm$^{-3}$, $G_0=10^3-10^5$ respectively. These mid-IR spectral tracers thus provide a tool to probe the similar but unresolved UV-illuminated surface of protoplanetary disks or the nuclei of starburst galaxies.
We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant spec ies, e.g., H+, H2+ and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+ and H3O+; HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in AGN. The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 10^4 years. Through ALMA observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the SMBH accretion rate. Strong evolutionary trends, on time scales of 10^4-10^8 years, are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا