ترغب بنشر مسار تعليمي؟ اضغط هنا

Homological stability for Artin monoids

164   0   0.0 ( 0 )
 نشر من قبل Rachael Boyd
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Rachael Boyd




اسأل ChatGPT حول البحث

We prove that certain sequences of Artin monoids containing the braid monoid as a submonoid satisfy homological stability. When the $K(pi,1)$ conjecture holds for the associated family of Artin groups this establishes homological stability for these groups. In particular, this recovers and extends Arnolds proof of stability for the Artin groups of type $A$, $B$ and $D$.



قيم البحث

اقرأ أيضاً

174 - Richard Hepworth 2020
We show that the Iwahori-Hecke algebras H_n of type A_{n-1} satisfy homological stability, where homology is interpreted as an appropriate Tor group. Our result precisely recovers Nakaokas homological stability result for the symmetric groups in the case that the defining parameter is equal to 1. We believe that this paper, and our joint work with Boyd on Temperley-Lieb algebras, are the first time that the techniques of homological stability have been applied to algebras that are not group algebras.
266 - Richard Hepworth 2015
We prove that certain families of Coxeter groups and inclusions $W_1hookrightarrow W_2hookrightarrow...$ satisfy homological stability, meaning that in each degree the homology $H_ast(BW_n)$ is eventually independent of $n$. This gives a uniform trea tment of homological stability for the families of Coxeter groups of type $A_n$, $B_n$ and $D_n$, recovering existing results in the first two cases, and giving a new result in the third. The key step in our proof is to show that a certain simplicial complex with $W_n$-action is highly connected. To do this we show that the barycentric subdivision is an instance of the basic construction, and then use Daviss description of the basic construction as an increasing union of chambers to deduce the required connectivity.
In this paper we study homological stability for spaces ${rm Hom}(mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $ngeqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${rm Comm}(G)$ and ${rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.
In this paper we introduce and study some geometric objects associated to Artin monoids. The Deligne complex for an Artin group is a cube complex that was introduced by the second author and Davis (1995) to study the K(pi,1) conjecture for these grou ps. Using a notion of Artin monoid cosets, we construct a version of the Deligne complex for Artin monoids. We show that for any Artin monoid this cube complex is contractible. Furthermore, we study the embedding of the monoid Deligne complex into the Deligne complex for the corresponding Artin group. We show that for any Artin group this is a locally isometric embedding. In the case of FC-type Artin groups this result can be strengthened to a globally isometric embedding, and it follows that the monoid Deligne complex is CAT(0) and its image in the Deligne complex is convex. We also consider the Cayley graph of an Artin group, and investigate properties of the subgraph spanned by elements of the Artin monoid. Our final results show that for a finite type Artin group, the monoid Cayley graph embeds isometrically, but not quasi-convexly, into the group Cayley graph.
We compute coherent presentations of Artin monoids, that is presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squiers and Knuth-Bendixs completions into a homotopical completion-reduction, applied to Artins and Garsides presentations. The main result of the paper states that the so-called Tits-Zamolodchikov 3-cells extend Artins presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا