ﻻ يوجد ملخص باللغة العربية
This is a translation of Eulers Latin paper De fractionibus continuis observationes into English. In this paper Euler describes his theory of continued fractions. He teaches, how to transform series into continued fractions, solves the Riccati-Differential equation by means of continued fractions and finds many other interesting formulas and results (e.g, the continued fraction for the quotient of two hypergeometric series usually attributed to Gau{ss})
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pa
We adjust Arnouxs coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the alpha-continued fractions, for each $alp
Large and moderate deviation principles are proved for Engel continued fractions, a new type of continued fraction expansion with non-decreasing partial quotients in number theory.
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separat
We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension