ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative ion radio frequency surface plasma source with solenoidal magnetic field

72   0   0.0 ( 0 )
 نشر من قبل Vadim Dudnikov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsed and CW operation of negative ion radio frequency surface plasma source with a solenoidal magnetic field is described. Dependences of a beam current on RF power, extraction voltage, solenoid magnetic field, gas flow are presented. Compact design of RF SPS is presented.



قيم البحث

اقرأ أيضاً

The method of molecular dynamics is used to study behavior of a ultracold non-ideal ion-electron Be plasma in a uniform magnetic field. Our simulations yield an estimate for the rate of electron-ion collisions which is non-monotonicallydependent on t he magnetic field magnitude. Also they explicitly show that there are two types of diffusion: classical one, corresponding to Brownian motion of particles, and Bohm diffusion when the trajectory of particles (guiding centers) includes substantial lengths of drift motion.
While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magneti c field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, $B_mathrm{gen} sim - 2 pi B_mathrm{seed} Delta x/lambda_0$, where $Delta x$ is the target thickness and $lambda_0$ is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a $mu$m-thick laser-irradiated target with a kilotesla-level seed magnetic field.
175 - J. Angot 2021
A new method for determining plasma parameters from beam current transients resulting from short pulse 1+ injection into a Charge Breeder Electron Cyclotron Resonance Ion Source (CB-ECRIS) has been developed. The proposed method relies on few assumpt ions, and yields the ionisation times $1/n_eleftlanglesigma vrightrangle^{text{inz}}_{qto q+1}$, charge exchange times $1/n_0leftlanglesigma vrightrangle^{text{cx}}_{qto q-1}$, the ion confinement times $tau^q$, as well as the plasma energy contents $n_eleftlangle E_erightrangle$ and the plasma triple products $n_e leftlangle E_erightrangle tau^q$. The method is based on fitting the current balance equation on the extracted beam currents of high charge state ions, and using the fitting coefficients to determine the postdictions for the plasma parameters via an optimisation routine. The method has been applied for the charge breeding of injected K$^+$ ions in helium plasma. It is shown that the confinement times of K$^{q+}$ charge states range from 2.6$^{+0.8}_{-0.4}$ ms to 16.4$^{+18.3}_{-6.8}$ ms increasing with the charge state. The ionisation and charge exchange times for the high charge state ions are 2.6$^{+0.5}_{-0.5}$ ms--12.6$^{+2.6}_{-3.2}$ ms and 3.7$^{+5.0}_{-1.6}$ ms--357.7$^{+406.7}_{-242.4}$ ms, respectively. The plasma energy content is found to be $2.5^{+4.3}_{-1.8}times 10^{15}$ eV/cm$^3$.
332 - Guoxue Yao , Jiulin Du 2020
We study the dust surface potential for the complex dusty plasma with negative ions and with a three-parameter non-Maxwell velocity distribution. The plasma contains electrons, positive ions, negative ions, and negatively charged dust particles. By u sing the current equilibrium condition, we derive the relationship between the normalized dust surface potential and the dusty plasma parameters such as the normalized dust number density, the temperature ratio of negative ions to electrons, the density ratio of negative ions to positive ions, and the charge number of negative ions. The numerical analyses show that the relationship depends evidently on the three parameters in the non-Maxwell distribution when the dust surface potential is relatively smaller, but with increase of the potential, such dependence will weaken soon. The dust surface potential is negative and increases monotonously with increase of the dust density, and for the complex dusty plasma with the three-parameter non-Maxwell distribution, it is generally greater than that in the same plasma with the kappa-distribution and the Maxwellian distribution.
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma ($< 20$ $mu$s), the size of the image is dominated by the time-of-flight Coulomb explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G). We observe that the expansion velocity scales as B$^{-1/2}$, explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا