ﻻ يوجد ملخص باللغة العربية
Professor Cunsheng Ding gave cyclotomic constructions of cyclic codes with length being the product of two primes. In this paper, we study the cyclic codes of length $n=2^e$ and dimension $k=2^{e-1}$. Clearly, Dings construction is not hold in this place. We describe two new types of generalized cyclotomy of order two, which are different from Dings. Furthermore, we study two classes of cyclic codes of length $n$ and dimension $k$. We get the enumeration of these cyclic codes. Whats more, all of the codes from our construction are among the best cyclic codes. Furthermore, we study the hull of cyclic codes of length $n$ over $mathbb{F}_q$. We obtain the range of $ell=dim({rm Hull}(C))$. We construct and enumerate cyclic codes of length $n$ having hull of given dimension.
This paper considers the construction of isodual quasi-cyclic codes. First we prove that two quasi-cyclic codes are permutation equivalent if and only if their constituent codes are equivalent. This gives conditions on the existence of isodual quasi-
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper, we present three new classes of $q$-ary quantum MDS codes utilizing generalized Reed-Solomon codes satisfying Hermitian self-orthogonal property. Among our constructions, the minimum distance of some $q$-ary quantum MDS codes can be bi
We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design proce
Let $mathbb{F}_{2^m}$ be a finite field of $2^m$ elements, and $R=mathbb{F}_{2^m}[u]/langle u^krangle=mathbb{F}_{2^m}+umathbb{F}_{2^m}+ldots+u^{k-1}mathbb{F}_{2^m}$ ($u^k=0$) where $k$ is an integer satisfying $kgeq 2$. For any odd positive integer $