ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Spin-Dependent Dark Matter Scattering with Long-Lived Mediators from TeV Observations of the Sun with HAWC

204   0   0.0 ( 0 )
 نشر من قبل Mehr Un Nisa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the Sun as a source for the indirect detection of dark matter through a search for gamma rays from the solar disk. Capture of dark matter by elastic interactions with the solar nuclei followed by annihilation to long-lived mediators can produce a detectable gamma-ray flux. We search three years of data from the High Altitude Water Cherenkov Observatory and find no statistically significant detection of TeV gamma-ray emission from the Sun. Using this, we constrain the spin-dependent elastic scattering cross section of dark matter with protons for dark matter masses above 1 TeV, assuming an unstable mediator with a favorable lifetime. The results complement constraints obtained from Fermi-LAT observations of the Sun and together cover WIMP masses between 4 GeV and $10^6$ GeV. The cross section constraints for mediator decays to gamma rays can be as strong as $sim10^{-45}$ cm$^{-2}$, which is more than four orders of magnitude stronger than current direct-detection experiments for 1 TeV dark matter mass. The cross-section constraints at higher masses are even better, nearly 7 orders of magnitude better than the current direct-detection constraints for 100 TeV dark matter mass. This demonstration of sensitivity encourages detailed development of theoretical models in light of these powerful new constraints.



قيم البحث

اقرأ أيضاً

A bevy of light dark matter direct detection experiments have been proposed, targeting spin-independent dark matter scattering. In order to be exhaustive, non-standard signatures that have been investigated in the WIMP window including spin-dependent dark matter scattering also need to be looked into in the light dark matter parameter space. In this work, we promote this endeavor by deriving indirect limits on sub-GeV spin-dependent dark matter through terrestrial and astrophysical limits on the forces that mediate this scattering.
We consider the indirect detection of dark matter that is captured in the Sun and subsequently annihilates to long lived dark mediators. If these mediators escape the Sun before decaying, they can produce striking gamma ray signals, either via the de cay of the mediators directly to photons, or via bremsstrahlung and hadronization of the mediator decay products. Using recent measurements from the HAWC Observatory, we determine model-independent limits on heavy dark matter that are orders of magnitude more powerful than direct detection experiments, for both spin-dependent and spin-independent scattering. We also consider a well-motivated model in which fermionic dark matter annihilates to dark photons. For such a realistic scenario, the strength of the solar gamma ray constraints are reduced, compared to the idealistic case, due to the fact that the dark matter capture cross section and mediator lifetime are related. Nonetheless, solar gamma ray constraints enable us to exclude a previously unconstrained region of dark photon parameter space.
We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by d ark matter scattering, leading to significant changes in fits to many observables. Based on solar physics alone, DM with a spin-independent $q^{4}$ coupling provides the best fit to data, and a statistically satisfactory solution to the solar abundance problem. Once direct detection limits are accounted for however, the best solution is spin-dependent $v^2$ scattering with a reference cross-section of 10$^{-35}$ cm$^2$ (at a reference velocity of $v_0=220$ km s$^{-1}$), and a dark matter mass of about 5 GeV.
We report the results of a global analysis of dark matter simplified models (DMSMs) with leptophobic mediator particles of spin one, considering the cases of both vector and axial-vector interactions with dark matter (DM) particles and quarks. We req uire the DMSMs to provide all the cosmological DM density indicated by Planck and other observations, and we impose the upper limits on spin-independent and -dependent scattering from direct DM search experiments. We also impose all relevant LHC constraints from searches for monojet events and measurements of the dijet mass spectrum. We model the likelihood functions for all the constraints and combine them within the MasterCode framework, and probe the full DMSM parameter spaces by scanning over the mediator and DM masses and couplings, not fixing any of the model parameters. We find, in general, two allowed regions of the parameter spaces: one in which the mediator couplings to Standard Model (SM) and DM particles may be comparable to those in the SM and the cosmological DM density is reached via resonant annihilation, and one in which the mediator couplings to quarks are $lesssim 10^{-3}$ and DM annihilation is non-resonant. We find that the DM and mediator masses may well lie within the ranges accessible to LHC experiments. We also present predictions for spin-independent and -dependent DM scattering, and present specific results for ranges of the DM couplings that may be favoured in ultraviolet completions of the DMSMs.
Broad disagreement persists between helioseismological observables and predictions of solar models computed with the latest surface abundances. Here we show that most of these problems can be solved by the presence of asymmetric dark matter coupling to nucleons as the square of the momentum $q$ exchanged in the collision. We compute neutrino fluxes, small frequency separations, surface helium abundances, sound speed profiles and convective zone depths for a number of models, showing more than a $6sigma$ preference for $q^2$ models over others, and over the Standard Solar Model. The preferred mass (3,GeV) and reference dark matter-nucleon cross-section ($10^{-37}$,cm$^2$ at $q_0 = 40$,MeV) are within the region of parameter space allowed by both direct detection and collider searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا