ﻻ يوجد ملخص باللغة العربية
Sequence generative adversarial networks (SeqGAN) have been used to improve conditional sequence generation tasks, for example, chit-chat dialogue generation. To stabilize the training of SeqGAN, Monte Carlo tree search (MCTS) or reward at every generation step (REGS) is used to evaluate the goodness of a generated subsequence. MCTS is computationally intensive, but the performance of REGS is worse than MCTS. In this paper, we propose stepwise GAN (StepGAN), in which the discriminator is modified to automatically assign scores quantifying the goodness of each subsequence at every generation step. StepGAN has significantly less computational costs than MCTS. We demonstrate that StepGAN outperforms previous GAN-based methods on both synthetic experiment and chit-chat dialogue generation.
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. W
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has bee
In this paper, we propose a novel conditional-generative-adversarial-nets-based image captioning framework as an extension of traditional reinforcement-learning (RL)-based encoder-decoder architecture. To deal with the inconsistent evaluation problem
We consider the hypothesis testing problem of detecting conditional dependence, with a focus on high-dimensional feature spaces. Our contribution is a new test statistic based on samples from a generative adversarial network designed to approximate d