ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilization of three-dimensional charge order in YBa$_2$Cu$_3$O$_{6+x}$ via epitaxial growth

71   0   0.0 ( 0 )
 نشر من قبل Martin Bluschke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Incommensurate charge order (CO) has been identified as the leading competitor of high-temperature superconductivity in all major families of layered copper oxides, but the perplexing variety of CO states in different cuprates has confounded investigations of its impact on the transport and thermodynamic properties. The three-dimensional (3D) CO observed in YBa$_2$Cu$_3$O$_{6+x}$ in high magnetic fields is of particular interest, because quantum transport measurements have revealed detailed information about the corresponding Fermi surface. Here we use resonant X-ray scattering to demonstrate 3D-CO in underdoped YBa$_2$Cu$_3$O$_{6+x}$ films grown epitaxially on SrTiO$_3$ in the absence of magnetic fields. The resonance profiles indicate that Cu sites in the charge-reservoir layers participate in the CO state, and thus efficiently transmit CO correlations between adjacent CuO$_2$ bilayer units. The results offer fresh perspectives for experiments elucidating the influence of 3D-CO on the electronic properties of cuprates without the need to apply high magnetic fields.



قيم البحث

اقرأ أيضاً

Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO$_{6.67}$ (YBCO$_{6.75}$) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.
We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotr opies have the same origin. The anisotropy drops sharply below the charge order transition. We interpret our results through a strong electron-phonon scattering picture and find that both electronic and phononic contributions to the diffusivity saturate a proposed bound. Our results suggest that neither well-defined electron nor phonon quasiparticles are present in this material.
The application of large magnetic fields ($B sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($ p sim 1/8$) samples show signatures of field-induced electronic and structural changes at low temperatures. However, the microscopic nature of the field-induced reconstruction and the high-field state are unclear. Here we report an x-ray study of the high-field charge density wave (CDW) in YBCO, for doping, $0.1 lesssim p lesssim 0.13$. For $p sim 0.123$, we find that a field ($B sim 10$~T) induces new CDW correlations along the CuO chain ($b$) direction only, leading to a 3-D ordered state along this direction at $B sim 15$~T. The CDW signal along the $a$-direction is also enhanced by field, but does not develop a new pattern of correlations. We find that field modifies the coupling between the CuO$_2$ bilayers in the YBCO structure, and causes the sudden appearance of 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing recently suggested Fermi surface reconstruction.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f or samples with x<0.44 that exhibit incommensurate spin-density-wave order, and in slightly overdoped samples with x=0.99. This suggests the presence of two proximate zero-temperature CDW critical points at doping pc1~0.08 and pc2~0.18. The CDW reflections are observed at incommensurate in-plane wave vectors (d_a, 0) and (0, d_b). Both decrease linearly with increasing doping, in agreement with recent reports on Bi-based high-Tc superconductors, but in sharp contrast to the behavior of the 214 family. The CDW intensity and correlation length exhibit maxima at p~0.12, coincident with a plateau in the superconducting transition temperature Tc. The onset temperature of the CDW reflections depends non-monotonically on p, with a maximum of~160 K for p~0.12. The RXS reflections exhibit a uniaxial intensity anisotropy. We further observe a depression of CDW correlations upon cooling below Tc, and (for samples with p> 0.09) an enhancement of the signal when an external magnetic field up to 6 T is applied in the superconducting state. For samples with p~0.08, where prior work has revealed a field-enhancement of incommensurate magnetic order, the RXS signal is field-independent. This supports a previously suggested scenario in which incommensurate charge and spin orders compete against each other, in addition to individually competing against. We discuss the relationship of these results to stripe order 214, the pseudogap phenomenon, superconducting fluctuations, and quantum oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا