ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold optical design for the Large Aperture Simons Observatory telescope

90   0   0.0 ( 0 )
 نشر من قبل Simon Dicker
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. R. Dicker




اسأل ChatGPT حول البحث

The Simons Observatory will consist of a single large (6 m diameter) telescope and a number of smaller (0.5 m diameter) refracting telescopes designed to measure the polarization of the Cosmic Microwave Background to unprecedented accuracy. The large aperture telescope is the same design as the CCAT-prime telescope, a modified Crossed Dragone design with a field-of-view of over 7.8 degrees diameter at 90 GHz. This paper presents an overview of the cold reimaging optics for this telescope and what drove our choice of 350-400 mm diameter silicon lenses in a 2.4 m cryostat over other possibilities. We will also consider the future expandability of this design to CMB Stage-4 and beyond.

قيم البحث

اقرأ أيضاً

The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design c hoices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.
The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline.
The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment from the Atacama Desert in Chile comprising three small-aperture telescopes (SATs) and one large-aperture telescope (LAT). In total, SO will field over 60,000 transition-ed ge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. In this work, we focus on the SATs which are optimized to search for primordial gravitational waves that are detected as parity-odd polarization patterns called a B-modes on degree scales in the CMB. Each SAT employs a single optics tube with TES arrays operating at 100 mK. The high throughput optics system has a 42 cm aperture and a 35-degree field of view coupled to a 36 cm diameter focal plane. The optics consist of three metamaterial anti-re ection coated silicon lenses. Cryogenic ring baffles with engineered blackbody absorbers are installed in the optics tube to minimize the stray light. The entire optics tube is cooled to 1 K. A cryogenic continuously rotating half-wave plate near the sky side of the aperture stop helps to minimize the effect of atmospheric uctuations. The telescope warm baffling consists of a forebaffle, an elevation stage mounted co-moving shield, and a fixed ground shield that together control the far side-lobes and mitigates ground-synchronous systematics. We present the status of the SAT development.
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). The 6~m Large Aperture Telescope (LAT), which will target the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. Each optics tube is comprised of three silicon lenses, IR blocking filters, and three dual-polarization, dichroic TES detector wafers. The scientific objectives of the SO project require these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the SO LATR optics tubes that will verify the design and assembly of the optics tubes before they are shipped to the SO site and installed in the LATR cryostat. The program includes a quick turn-around test cryostat that is used to cool single optics tubes and validate the cryogenic performance and detector readout assembly. We discuss the optical design specifications the optics tubes must meet to be deployed on sky and the suite of optical test equipment that is prepared to measure these requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا