ﻻ يوجد ملخص باللغة العربية
The electroweak fine-tuning measure Delta(EW) allows for correlated SUSY soft terms as are expected in any ultra-violet complete theory. Requiring no less than 3% electroweak fine-tuning implies upper bounds of about 360~GeV on all higgsinos, while top squarks are lighter than ~3 TeV and gluinos are bounded by ~ 6-9 TeV. We examine the reach for SUSY of the planned high luminosity (HL: 3 ab^{-1} at 14 TeV) and the proposed high energy (HE: 15 ab^{-1} at 27 TeV) upgrades of the LHC via four LHC collider search channels relevant for natural SUSY: 1. gluino pair production followed by gluino decay to third generation (s)quarks, 2. top-squark pair production followed by decay to third generation quarks and light higgsinos, 3. neutral higgsino pair production with QCD jet radiation (resulting in monojet events with soft dileptons), and 4. wino pair production followed by decay to light higgsinos leading to same-sign diboson production. We confront our reach results with upper limits on superpartner masses in four natural SUSY models: natural gravity-mediation via the 1. two- and 2. three-extra-parameter non-universal Higgs models, 3. natural mini-landscape models with generalized mirage mediation and 4. natural anomaly-mediation. We find that while the HL-LHC can probe considerable portions of natural SUSY parameter space in all these models, the HE-LHC will decisively cover the entire natural SUSY parameter space with better than 3% fine-tuning.
Recent clarifications of naturalness in supersymmetry robustly require the presence of four light higgsinos with mass ~100-300 GeV while gluinos and (top)-squarks may lie in the multi-TeV range, possibly out of LHC reach. We project the high luminosi
Radiatively-driven natural supersymmetry (RNS) potentially reconciles the Z and Higgs boson masses close to 100 GeV with gluinos and squarks lying beyond the TeV scale. Requiring no large cancellations at the electroweak scale in constructing M_Z=91.
Gluinos that result in classic large missing transverse momentum signatures at the LHC have been excluded by 2011 searches if they are lighter than around 800 GeV. This adds to the tension between experiment and supersymmetric solutions of the natura
Current analyses of the LHC data put stringent bounds on strongly interacting supersymmetric particles, restricting the masses of squarks and gluinos to be above the TeV scale. However, the supersymmetric electroweak sector is poorly constrained. In
The motivation for introduction of supersymmetry in high energy physics as well as a possibility for supersymmetry discovery at LHC (Large Hadronic Collider) are discussed. The main notions of the Minimal Supersymmetric Standard Model (MSSM) are intr