ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods for the detection of gravitational waves from sub-solar mass ultracompact binaries

129   0   0.0 ( 0 )
 نشر من قبل Ryan Magee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe detection methods for extensions of gravitational wave searches to sub-solar mass compact binaries. Sub-solar mass searches were previously carried out using Initial LIGO, and Advanced LIGO boasts a detection volume approximately 1000 times bigger than Initial LIGO at design sensitivity. Low masses present computational difficulties, and we suggest a way to rein in the increase while retaining a sensitivity much greater than previous searches. Sub-solar mass compact objects are of particular interest because they are not expected to form astrophysically. If detected they could be evidence of primordial black holes (PBH). We consider a particular model of PBH binary formation that would allow LIGO/Virgo to place constraints on this population within the context of dark matter, and we demonstrate how to obtain conservative bounds for the upper limit on the dark matter fraction.



قيم البحث

اقرأ أيضاً

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_odot$ - 1.0 $M_odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational w ave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_odot$, 0.2 $M_odot$) ultracompact binaries to be less than $1.0 times 10^6 text{Gpc}^{-3} text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_odot$, 1.0 $M_odot$) ultracompact binaries to be less than $1.9 times 10^4 text{Gpc}^{-3} text{yr}^{-1}$ (at 90 percent confidence). Neither black holes nor neutron stars are expected to form below ~ 1 solar mass through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early universe. Under a particular primordial black hole binary formation scenario, we constrain monochromatic primordial black hole populations of 0.2 $M_odot$ to be less than $33%$ of the total dark matter density and monochromatic populations of 1.0 $M_odot$ to be less than $5%$ of the dark matter density. The latter strengthens the presently placed bounds from micro-lensing surveys of MAssive Compact Halo Objects (MACHOs) provided by the MACHO and EROS collaborations.
135 - Marc van der Sluys 2011
In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) bi naries that LISA will observe as soon as it is switched on. Finally, the status and near future of LIGO, Virgo and GEO are discussed, as well as the expected detection rates for the Advanced detectors, and the accuracies with which binary parameters can be determined when BH/NS inspirals are detected.
A second generation of gravitational wave detectors will soon come online with the objective of measuring for the first time the tiny gravitational signal from the coalescence of black hole and/or neutron star binaries. In this communication, we prop ose a new time-frequency search method alternative to matched filtering techniques that are usually employed to detect this signal. This method relies on a graph that encodes the time evolution of the signal and its variability by establishing links between coefficients in the multi-scale time-frequency decomposition of the data. We provide a proof of concept for this approach.
We discuss gravitational waves from merging binaries using a Newtonian approach with some inputs from the Post-Newtonian formalism. We show that it is possible to understand the key features of the signal using fundamental physics and also demonstrat e that an approximate calculation gives us the correct order of magnitude estimate of the parameters describing the merging binary system. We build on this analysis to understand the range for different types of sources for given detector sensitivity. We also consider known binary pulsar systems and discuss the expected gravitational wave signal from these.
Some fraction of compact binaries that merge within a Hubble time may have formed from two massive stars in isolation. For this isolated-binary formation channel, binaries need to survive two supernova (SN) explosions in addition to surviving common- envelope evolution. For the SN explosions, both the mass loss and natal kicks change the orbital characteristics, producing either a bound or unbound binary. We show that gravitational waves (GWs) may be produced not only from the core-collapse SN process, but also from the SN mass loss and SN natal kick during the pre-SN to post-SN binary transition. We model the dynamical evolution of a binary at the time of the second SN explosion with an equation of motion that accounts for the finite timescales of the SN mass loss and the SN natal kick. From the dynamical evolution of the binary, we calculate the GW burst signals associated with the SN natal kicks. We find that such GW bursts may be of interest to future mid-band GW detectors like DECIGO. We also find that the energy radiated away from the GWs emitted due to the SN mass loss and natal kick may be a significant fraction, ${gtrsim}10%$, of the post-SN binarys orbital energy. For unbound post-SN binaries, the energy radiated away in GWs tends to be higher than that of bound binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا