ﻻ يوجد ملخص باللغة العربية
We introduce a new class of arrangements of hyperplanes, called (strictly) plus-one generated arrangements, from algebraic point of view. Plus-one generatedness is close to freeness, i.e., plus-one generated arrangements have their logarithmic derivation modules generated by dimension plus one elements, with relations containing one linear form coefficient. We show that strictly plus-one generated arrangements can be obtained if we delete a hyperplane from free arrangements. We show a relative freeness criterion in terms of plus-one generatedness. In particular, for plane arrangements, we show that a free arrangement is in fact surrounded by free or strictly plus-one generated arrangements. We also give several applications.
We study the classes of free and plus-one generated hyperplane arrangements. Specifically, we describe how to compute the associated prime ideals of the Jacobian ideal of such an arrangement from its lattice of intersection. Moreover, we prove that t
Hyperplane Arrangements of rank $3$ admitting an unbalanced Ziegler restriction are known to fulfill Teraos conjecture. This long-standing conjecture asks whether the freeness of an arrangement is determined by its combinatorics. In this note, we pro
We study the connection between probability distributions satisfying certain conditional independence (CI) constraints, and point and line arrangements in incidence geometry. To a family of CI statements, we associate a polynomial ideal whose algebra
Let I be a homogeneous ideal of a polynomial ring S. We prove that if the initial ideal J of I, w.r.t. a term order on S, is square-free, then the extremal Betti numbers of S/I and of S/J coincide. In particular, depth(S/I)=depth(S/J) and reg(S/I)=reg(S/J).
We define specific multiplicities on the braid arrangement by using edge-bicolored graphs. To consider their freeness, we introduce the notion of bicolor-eliminable graphs as a generalization of Stanleys classification theory of free graphic arrangem