ﻻ يوجد ملخص باللغة العربية
Scalable and fault-tolerant quantum computation will require error correction. This will demand constant measurement of many-qubit observables, implemented using a vast number of CNOT gates. Indeed, practically all operations performed by a fault-tolerant device will be these CNOTs, or equivalent two-qubit controlled operations. It is therefore important to devise benchmarks for these gates that explicitly quantify their effectiveness at this task. Here we develop such benchmarks, and demonstrate their use by applying them to a range of differently implemented controlled gates and a particular quantum error correcting code. Specifically, we consider spin qubits confined to quantum dots that are coupled either directly or via floating gates to implement the minimal 17-qubit instance of the surface code. Our results show that small differences in the gate fidelity can lead to large differences in the performance of the surface code. This shows that gate fidelity is not, in general, a good predictor of code performance.
Leakage outside of the qubit computational subspace, present in many leading experimental platforms, constitutes a threatening error for quantum error correction (QEC) for qubits. We develop a leakage-detection scheme via Hidden Markov models (HMMs)
We present a set of practical benchmarks for $N$-qubit arrays that economically test the fidelity of achieving multi-qubit nonclassicality. The benchmarks are measurable correlators similar to 2-qubit Bell correlators, and are derived from a particul
We realize a suite of logical operations on a distance-two logical qubit stabilized using repeated error detection cycles. Logical operations include initialization into arbitrary states, measurement in the cardinal bases of the Bloch sphere, and a u
We introduce a data bus, for reducing the qubit counts within quantum computations (protected by surface codes). For general computations, an automated trade-off analysis (software tool and source code are open sourced and available online) is perfor
Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this level of tolerance, numerically st