ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular charge fluctuations at a magnetic quantum critical point

127   0   0.0 ( 0 )
 نشر من قبل Silke Buehler-Paschen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strange metal behavior is ubiquitous to correlated materials ranging from cuprate superconductors to bilayer graphene. There is increasing recognition that it arises from physics beyond the quantum fluctuations of a Landau order parameter which, in quantum critical heavy fermion antiferromagnets, may be realized as critical Kondo entanglement of spin and charge. The dynamics of the associated electronic delocalization transition could be ideally probed by optical conductivity, but experiments in the corresponding frequency and temperature ranges have remained elusive. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy-grown thin films of YbRh$_2$Si$_2$, a model strange metal compound. We observe frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery implicates critical charge fluctuations as playing a central role in the strange metal behavior, thereby elucidating one of the longstanding mysteries of correlated quantum matter.



قيم البحث

اقرأ أيضاً

Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an x-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pr essure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase, and, in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the longstanding expectations of enhanced quantum fluctuations in low dimensional systems, and may help to constrain theories of the quantum critical Fermi surface.
Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously repor ted dielectric anomaly at 8~K in powder samples is not due to a chiral spin liquid state as has been suggested, but rather to a tiny amount of a ferroelectric impurity phase. Two field-induced quantum phase transitions between paraelectric and paramagnetic and ferroelectric and magnetically ordered states are clearly observed. It is shown that the electric polarization is a secondary order parameter at the lower-field (gap closure) quantum critical point but a primary one at the saturation transition. Having clearly identified the magnetic Bose-Einstein condensation (BEC) nature of the latter, we use the dielectric channel to directly measure the critical divergence of BEC susceptibility. The observed power-law behavior is in very good agreement with theoretical expectations for three-dimensional BEC. Finally, dielectric data reveal magnetic presaturation phases in this compound that may feature exotic order with unconventional broken symmetries.
Quantum critical points (QCPs) are widely accepted as a source of a diverse set of collective quantum phases of matter. A central question is how the order parameters of phases near a QCP interact and determine the fundamental character of the critic al dynamics which drive the quantum critical behavior. One of the most interesting proposals for the quantum critical behavior that occurs in correlated electron systems is that the behavior may arise from local, as opposed to long wavelength, critical fluctuations of the order parameter. The local criticality is believed to give rise to energy over temperature ($E/T$) scaling of the dynamic susceptibility with a fractional exponent near the quantum critical point (QCP). Here we show that $E/T$ scaling is indeed observed for CeCu$_{6-x}$Ag$_x$ but on closer inspection, the fluctuations can be separated into two components, implying that multiple order parameters play an important role in the unconventional critical behavior. Additionally, when the fluctuations corresponding to the magnetically ordered side of the phase diagram are separated, they are found to be three dimensional and to obey the scaling behavior expected for long wavelength fluctuations near an itinerant antiferromagnetic QCP.
Entanglement of two different quantum orders is of an interest of the modern condensed matter physics. One of the examples is the dynamical multiferroicity, where fluctuations of electric dipoles lead to magnetization. We investigate this effect at f inite temperature and demonstrate an elevated magnetic response of a ferroelectric near the ferroelectric quantum critical point (FE QCP). We calculate the magnetic susceptibility of a bulk sample on the paraelectric side of the FE QCP at finite temperature and find enhanced magnetic susceptibility near the FE QCP. We propose quantum paraelectric strontium titanate (STO) as a candidate material to search for dynamic multiferroicity. We estimate the magnitude of the magnetic susceptibility for this material and find that it is detectable experimentally.
Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasi-cla ssical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا