ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary equivalence between the Greens function and Schrodinger approaches for quantum graphs

282   0   0.0 ( 0 )
 نشر من قبل Fabiano Andrade
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a previous work [Andrade textit{et al.}, Phys. Rep. textbf{647}, 1 (2016)], it was shown that the exact Greens function (GF) for an arbitrarily large (although finite) quantum graph is given as a sum over scattering paths, where local quantum effects are taken into account through the reflection and transmission scattering amplitudes. To deal with general graphs, two simplifying procedures were developed: regrouping of paths into families of paths and the separation of a large graph into subgraphs. However, for less symmetrical graphs with complicated topologies as, for instance, random graphs, it can become cumbersome to choose the subgraphs and the families of paths. In this work, an even more general procedure to construct the energy domain GF for a quantum graph based on its adjacency matrix is presented. This new construction allows us to obtain the secular determinant, unraveling a unitary equivalence between the scattering Schrodinger approach and the Greens function approach. It also enables us to write a trace formula based on the Greens function approach. The present construction has the advantage that it can be applied directly for any graph, going from regular to random topologies.



قيم البحث

اقرأ أيضاً

In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robi n type as particular cases. We derive an explicit representation of the time dependent Greens function and give a mathematical rigorous meaning to the corresponding integral for holomorphic initial conditions, using Fresnel integrals. Superoscillatory functions appear in the context of weak measurements in quantum mechanics and are naturally treated as holomorphic entire functions. As an application of the Greens function we study the stability and oscillatory properties of the solution of the Schrodinger equation subject to a generalized point interaction when the initial datum is a superoscillatory function.
We analytically evaluate the generating integral $K_{nl}(beta,beta) = int_{0}^{infty}int_{0}^{infty} e^{-beta r - beta r}G_{nl} r^{q} r^{q} dr dr$ and integral moments $J_{nl}(beta, r) = int_{0}^{infty} dr G_{nl}(r,r) r^{q} e^{-beta r}$ for the reduc ed Coulomb Greens function $G_{nl}(r,r)$ for all values of the parameters $q$ and $q$, when the integrals are convergent. These results can be used in second-order perturbation theory to analytically obtain the complete energy spectra and local physical characteristics such as electronic densities of multi-electron atoms or ions.
It is well known that a suggestive relation exists that links Schrodingers equation (SE) to the information-optimizing principle based on Fishers information measure (FIM). The connection entails the existence of a Legendre transform structure underl ying the SE. Here we show that appeal to this structure leads to a first order differential equation for the SEs eigenvalues that, in certain cases, can be used to obtain the eigenvalues without explicitly solving SE. Complying with the above mentioned equation constitutes a necessary condition to be satisfied by an energy eigenvalue. We show that the general solution is unique.
Methods based on the use of Greens functions or the Jost functions and the Fock-Krylov method are apparently very different approaches to understand the time evolution of unstable states. We show that the two former methods are equivalent up to some constants and as an outcome find an analytic expression for the energy density of states in the Fock-Krylov amplitude in terms of the coefficients introduced in the Greens functions and the Jost functions methods. This model-independent density is further used to obtain an analytical expression for the survival amplitude and study its behaviour at large times. Using these expressions, we investigate the origin of the oscillatory behaviour of the decay law in the region of the transition from the exponential to the non-exponential at large times. With the objective to understand the failure of nuclear and particle physics experiments in observing the non-exponential decay law predicted by quantum mechanics for large times, we derive analytical formulae for the critical transition time, $t_c$, from the exponential to the inverse power law behaviour at large times. Evaluating $tau_c = Gamma t_c$ for some particle resonances and narrow nuclear states which have been tested experimentally to verify the exponential decay law, we conclude that the large time power law in particle and nuclear decay is hard to find experimentally.
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are tr eated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times $T_{1}$ and $T_{2}$ (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with $T_{1}$). To this end, we simply associate the time-dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا