ترغب بنشر مسار تعليمي؟ اضغط هنا

On a sum involving the Euler function

235   0   0.0 ( 0 )
 نشر من قبل Igor Shparlinski
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain reasonably tight upper and lower bounds on the sum $sum_{n leqslant x} varphi left( leftlfloor{x/n}rightrfloorright)$, involving the Euler functions $varphi$ and the integer parts $leftlfloor{x/n}rightrfloor$ of the reciprocals of integers.



قيم البحث

اقرأ أيضاً

172 - Jing Ma , Huayan Sun 2021
In this short, we study sums of the shape $sum_{nleqslant x}{f([x/n])}/{[x/n]},$ where $f$ is Euler totient function $varphi$, Dedekind function $Psi$, sum-of-divisors function $sigma$ or the alternating sum-of-divisors function $beta.$ We improve pr evious results when $f=varphi$ and derive new estimates when $f=Psi, f=sigma$ and $f=beta.$
108 - Kui Liu , Jie Wu , Zhishan Yang 2021
Denote by $tau$ k (n), $omega$(n) and $mu$ 2 (n) the number of representations of n as product of k natural numbers, the number of distinct prime factors of n and the characteristic function of the square-free integers, respectively. Let [t] be the i ntegral part of real number t. For f = $omega$, 2 $omega$ , $mu$ 2 , $tau$ k , we prove that n x f x n = x d 1 f (d) d(d + 1) + O $epsilon$ (x $theta$ f +$epsilon$) for x $rightarrow$ $infty$, where $theta$ $omega$ = 53 110 , $theta$ 2 $omega$ = 9 19 , $theta$ $mu$2 = 2 5 , $theta$ $tau$ k = 5k--1 10k--1 and $epsilon$ > 0 is an arbitrarily small positive number. These improve the corresponding results of Bordell{`e}s.
127 - W.A. Khan , K.S. Nisar , M. Ahmed 2017
This paper deals with a Euler type integral operator involving k-Mittag-Leffler function defined by Gupta and Parihar [8]. Furthermore, some special cases are also taken into consideration.
We define a new parameter $A_{k,n}$ involving Ramanujans theta-functions for any positive real numbers $k$ and $n$ which is analogous to the parameter $A_{k,n}$ defined by Nipen Saikia cite{NS1}. We establish some modular relation involving $A_{k,n}$ and $A_{k,n}$ to find some explicit values of $A_{k,n}$. We use these parameters to establish few general theorems for explicit evaluations of ratios of theta functions involving $varphi(q)$.
189 - Taekyun Kim 2008
Recently the new q-Euler numbers are defined. In this paper we derive the the Kummer type congruence related to q-Euler numbers and we introduce some interesting formulae related to these q-Euler numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا