ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Task Effects in Human Reading with Neural Attention

74   0   0.0 ( 0 )
 نشر من قبل Michael Hahn
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans read by making a sequence of fixations and saccades. They often skip words, without apparent detriment to understanding. We offer a novel explanation for skipping: readers optimize a tradeoff between performing a language-related task and fixating as few words as possible. We propose a neural architecture that combines an attention module (deciding whether to skip words) and a task module (memorizing the input). We show that our model predicts human skipping behavior, while also modeling reading times well, even though it skips 40% of the input. A key prediction of our model is that different reading tasks should result in different skipping behaviors. We confirm this prediction in an eye-tracking experiment in which participants answers questions about a text. We are able to capture these experimental results using the our model, replacing the memorization module with a task module that performs neural question answering.



قيم البحث

اقرأ أيضاً

134 - Jiajie Zou , Nai Ding 2021
Attention is a key mechanism for information selection in both biological brains and many state-of-the-art deep neural networks (DNNs). Here, we investigate whether humans and DNNs allocate attention in comparable ways when reading a text passage to subsequently answer a specific question. We analyze 3 transformer-based DNNs that reach human-level performance when trained to perform the reading comprehension task. We find that the DNN attention distribution quantitatively resembles human attention distribution measured by fixation times. Human readers fixate longer on words that are more relevant to the question-answering task, demonstrating that attention is modulated by top-down reading goals, on top of lower-level visual and text features of the stimulus. Further analyses reveal that the attention weights in DNNs are also influenced by both top-down reading goals and lower-level stimulus features, with the shallow layers more strongly influenced by lower-level text features and the deep layers attending more to task-relevant words. Additionally, deep layers attention to task-relevant words gradually emerges when pre-trained DNN models are fine-tuned to perform the reading comprehension task, which coincides with the improvement in task performance. These results demonstrate that DNNs can evolve human-like attention distribution through task optimization, which suggests that human attention during goal-directed reading comprehension is a consequence of task optimization.
Reading text in the wild is a challenging task in the field of computer vision. Existing approaches mainly adopted Connectionist Temporal Classification (CTC) or Attention models based on Recurrent Neural Network (RNN), which is computationally expen sive and hard to train. In this paper, we present an end-to-end Attention Convolutional Network for scene text recognition. Firstly, instead of RNN, we adopt the stacked convolutional layers to effectively capture the contextual dependencies of the input sequence, which is characterized by lower computational complexity and easier parallel computation. Compared to the chain structure of recurrent networks, the Convolutional Neural Network (CNN) provides a natural way to capture long-term dependencies between elements, which is 9 times faster than Bidirectional Long Short-Term Memory (BLSTM). Furthermore, in order to enhance the representation of foreground text and suppress the background noise, we incorporate the residual attention modules into a small densely connected network to improve the discriminability of CNN features. We validate the performance of our approach on the standard benchmarks, including the Street View Text, IIIT5K and ICDAR datasets. As a result, state-of-the-art or highly-competitive performance and efficiency show the superiority of the proposed approach.
Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear, placing an obstacle for further understanding these models. This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final performance, trying to analyze the potential explainability in PLM-based MRC models. We perform quantitative analyses on SQuAD (English) and CMRC 2018 (Chinese), two span-extraction MRC datasets, on top of BERT, ALBERT, and ELECTRA in various aspects. We discover that {em passage-to-question} and {em passage understanding} attentions are the most important ones, showing strong correlations to the final performance than other parts. Through visualizations and case studies, we also observe several general findings on the attention maps, which could be helpful to understand how these models solve the questions.
308 - Tapas Nayak , Hwee Tou Ng 2019
Relation extraction is the task of determining the relation between two entities in a sentence. Distantly-supervised models are popular for this task. However, sentences can be long and two entities can be located far from each other in a sentence. T he pieces of evidence supporting the presence of a relation between two entities may not be very direct, since the entities may be connected via some indirect links such as a third entity or via co-reference. Relation extraction in such scenarios becomes more challenging as we need to capture the long-distance interactions among the entities and other words in the sentence. Also, the words in a sentence do not contribute equally in identifying the relation between the two entities. To address this issue, we propose a novel and effective attention model which incorporates syntactic information of the sentence and a multi-factor attention mechanism. Experiments on the New York Times corpus show that our proposed model outperforms prior state-of-the-art models.
Current reading comprehension models generalise well to in-distribution test sets, yet perform poorly on adversarially selected inputs. Most prior work on adversarial inputs studies oversensitivity: semantically invariant text perturbations that caus e a models prediction to change when it should not. In this work we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the models prediction does not, even though it should. We formulate a noisy adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. Despite comprising unanswerable questions, both SQuAD2.0 and NewsQA models are vulnerable to this attack. This indicates that although accurate, models tend to rely on spurious patterns and do not fully consider the information specified in a question. We experiment with data augmentation and adversarial training as defences, and find that both substantially decrease vulnerability to attacks on held out data, as well as held out attack spaces. Addressing undersensitivity also improves results on AddSent and AddOneSent, and models furthermore generalise better when facing train/evaluation distribution mismatch: they are less prone to overly rely on predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا