ﻻ يوجد ملخص باللغة العربية
For representing articulated shapes, as an alternative to the structured models based on graphs representing part hierarchy, we propose a pixel-based distinctness measure. Its spatial distribution yields a partitioning of the shape into a set of regions each of which is represented via size normalized probability distribution of the distinctness. Without imposing any structural relation among parts, pairwise shape similarity is formulated as the cost of an optimal assignment between respective regions. The matching is performed via Hungarian algorithm permitting some unmatched regions. The proposed similarity measure is employed in the context of clustering a set of shapes. The clustering results obtained on three articulated shape datasets show that our method performs comparable to state of the art methods utilizing component graphs or trees even though we are not explicitly modeling component relations.
We propose deep virtual markers, a framework for estimating dense and accurate positional information for various types of 3D data. We design a concept and construct a framework that maps 3D points of 3D articulated models, like humans, into virtual
Recent work has made significant progress on using implicit functions, as a continuous representation for 3D rigid object shape reconstruction. However, much less effort has been devoted to modeling general articulated objects. Compared to rigid obje
We present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding. Different from volumetric-based or octree-based CNN methods that represent a 3D shape with voxels in the same resolution,
We propose novel motion representations for animating articulated objects consisting of distinct parts. In a completely unsupervised manner, our method identifies object parts, tracks them in a driving video, and infers their motions by considering t
Human can infer the 3D geometry of a scene from a sketch instead of a realistic image, which indicates that the spatial structure plays a fundamental role in understanding the depth of scenes. We are the first to explore the learning of a depth-speci