ﻻ يوجد ملخص باللغة العربية
The full-sky Planck polarization data at 850um revealed unexpected properties of the E and B mode power spectra of dust emission in the interstellar medium (ISM). The positive cross-correlation between the total dust intensity, T, with the B modes has raised new questions about the physical mechanisms that affect dust polarization, such as the Galactic magnetic-field structure. This is key both to better understanding ISM dynamics and to accurately describing Galactic foregrounds to the polarization of the Cosmic Microwave Background (CMB). In this theoretical paper we investigate the possibility that the observed cross-correlations in the dust polarization power spectra, and specifically between T and B, can be related to a parity-odd quantity in the ISM such as the magnetic helicity. We produce synthetic dust polarization data, derived from 3D analytical toy models of density structures and helical magnetic fields, to compare with the E and B modes of observations. Focusing on the observed T-B correlation, we propose a new line of interpretation of the Planck observations based on a large-scale helical component of the Galactic magnetic field in the solar neighborhood. Our analysis shows that: I) the sign of magnetic helicity does not affect E and B modes for isotropic magnetic-field configurations; II) helical magnetic fields threading interstellar filaments cannot reproduce the Planck results; III) a weak helical left-handed magnetic field structure in the solar neighborhood may explain the T-B correlation seen in the Planck data. This work suggests a new perspective for the interpretation of the dust polarization power spectra, which strongly supports the imprint of a large-scale structure of the Galactic magnetic field in the solar neighborhood.
Dust polarization is a powerful tool for studying the magnetic field properties in the interstellar medium (ISM). However, it does not provide a direct measurement of its strength. Different methods havebeen developed which employ both polarization a
Magnetism is one of the most important forces on the interstellar medium (ISM), anisotropically regulating the structure and star formation that drive galactic evolution. Recent high dynamic range observations of diffuse gas and molecular clouds have
Observations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached
Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that
Similar directions are obtained for the local interstellar magnetic field (ISMF) by comparing diverse data and models that sample five orders of magnetic in spatial scales. These data include the ribbon of energetic neutral atoms discovered by the In