ترغب بنشر مسار تعليمي؟ اضغط هنا

High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics

97   0   0.0 ( 0 )
 نشر من قبل Evan Meyer-Scott
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entangled photon pair sources based on bulk optics are approaching optimal design and implementation, with high state fidelities, spectral purities and heralding efficiencies, but generally low brightness. Integrated entanglement sources, while providing higher brightness and low-power operation, often sacrifice performance in output state quality and coupling efficiency. Here we present a polarization-entangled pair source based on a hybrid approach of waveguiding and bulk optics, addressing every metric simultaneously. We show 96% fidelity to the singlet state, 82% Hong-Ou-Mandel interference visibility, 43% average Klyshko efficiency, and a high brightness of $2.9times10^6$ pairs/(mode$cdot$s$cdot$mW), while requiring only microwatts of pump power.



قيم البحث

اقرأ أيضاً

366 - Youn Seok Lee 2020
We designed and implemented a novel combination of a Sagnac-interferometer with a Mach-Zehnder interferometer for a source of polarization-entangled photons. The new versatile configuration does not require multi-wavelength polarization optics, yet i t performs with a good polarization quality and phase-stability over a wide wavelength range. We demonstrate the interferometer using only standard commercial optics to experimentally realize the pulsed generation of polarization-entangled photon-pairs at wavelengths of 764nm and 1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining fiber. Polarization entanglement was verified by a polarization-correlation measurement with a visibility of 95.5% from raw coincidence counts and the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with $S=2.70pm0.04$. The long-term phase-stability was characterized by an Allan deviation of 8$^circ$ over an integration time of about 1 hour with no active phase-stabilization.
We present a scheme for an integrated four-wave mixing source of narrow-band path-entangled photon pairs with efficient spatial pump self-rejection. The scheme is based on correlated loss in a system of waveguides in Kerr nonlinear media. We demonstr ate that this setup allows for upwards of 100dB pump rejection, without additional filtering. The effect is reached by driving the symmetric collective mode that is strongly attenuated by an engineered dissipation, while photon pairs are born in the antisymmetric mode. A similar set-up can additionally be realized for generation of two-photon NOON states, also with pump self-rejection. We discuss implementation of the scheme by means of the coherent diffusive photonics, and demostrate its feasibility both in glass (such as fused silica-glass and IG2), and planar semiconductor waveguide structures in indium phosphide (InP) and in silicon.
Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973(3) and a test of Bells inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.
77 - A. Gilchrist , K. J. Resch , 2006
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge red entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization ent angled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا