ﻻ يوجد ملخص باللغة العربية
The study establishes that the degree of optically induced spin polarization that can be achieved for NV$^- $in 1b diamond is limited by the concentration of single substitutional nitrogen, N$^0$ . The polarization of the individual NV centres in the diamond is dependent on the separation of the NV$^-$ and the nitrogen donor. When the NV$^-$ - N$^+$ pair separation is large the properties of the pair will be as for single sites and a high degree of spin polarization attainable. When the separation decreases the emission is reduced, the lifetime shortened and the spin polarization downgraded. The deterioration occurs as a consequence of electron tunneling in the excited state from NV$^-$ to N$^+$ and results in an optical cycle that includes NV$^0$. The tunneling process is linear in optical excitation and more prevalent the closer the N$^+$ is to the NV$^-$ centre. However, the separation between the NV$^-$ and its donor N$^+$ can be effected by light through the excitation of NV$^-$ and/or ionization of N$^0$. The optical excitation that creates the spin polarization can also modify the sample properties and during excitation creates charge dynamics. The consequence is that the magnitude of spin polarization, the spin relaxation and coherence times T$_1$ and T$_2$ have a dependence on the nitrogen concentration and on the excitation wavelength. The adjacent N$^+$ gives an electric field that Stark shifts the NV$^-$ transitions and for an ensemble results in line broadening. It is observation of changes of these Stark induced effects that allow the variation in NV$^-$ - N$^+$ separation to be monitored. Spectroscopic measurements including that of the varying line widths are central to the study. They are made at low temperatures and include extensive measurements of the NV$^-$ optical transition at 637 nm, the infrared transition at 1042 nm and ODMR at 2.87 GHz.
The characteristic transition of the NV- centre at 637 nm is between ${}^3mathrm{A}_2$ and ${}^3mathrm{E}$ triplet states. There are also intermediate ${}^1mathrm{A}_1$ and ${}^1mathrm{E}$ singlet states, and the infrared transition at 1042 nm betwee
Significant attention has been recently focused on the realization of high precision nano-thermometry using the spin-resonance temperature shift of the negatively charged nitrogen-vacancy (NV-) center in diamond. However, the precise physical origins
Creation of nitrogen-vacancy (NV) centers at the nanoscale surface region in diamond, while retaining their excellent spin and optical properties, is essential for applications in quantum technology. Here, we demonstrate the extension of the spin-coh
The novel aspect of the centre (NV-) in diamond is the high degree of spin polarisation achieved through optical illumination. In this paper it is shown that the spin polarisation occurs as a consequence of an electron-vibration interaction combined
We studied the parameters to optimize the production of negatively-charged nitrogen-vacancy color centers (NV-) in type~1b single crystal diamond using proton irradiation followed by thermal annealing under vacuum. Several samples were treated under