ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of Relay Cooperation on the Performance of Large-scale Multipair Two-way Relay Networks

62   0   0.0 ( 0 )
 نشر من قبل Muris Sarajli\\'c
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multipair two-way relay communication network, where pairs of user devices exchange information via a relay system. The communication between users employs time division duplex, with all users transmitting simultaneously to relays in one time slot and relays sending the processed information to all users in the next time slot. The relay system consists of a large number of single antenna units that can form groups. Within each group, relays exchange channel state information (CSI), signals received in the uplink and signals intended for downlink transmission. On the other hand, per-group CSI and uplink/downlink signals (data) are not exchanged between groups, which perform the data processing completely independently. Assuming that the groups perform zero-forcing in both uplink and downlink, we derive a lower bound for the ergodic sumrate of the described system as a function of the relay group size. By close observation of this lower bound, it is concluded that the sumrate is essentially independent of group size when the group size is much larger than the number of user pairs. This indicates that a very large group of cooperating relays can be substituted by a number of smaller groups, without incurring any significant performance reduction. Moreover, this result implies that relay cooperation is more efficient (in terms of resources spent on cooperation) when several smaller relay groups are used in contrast to a single, large group.



قيم البحث

اقرأ أيضاً

In this paper, we study the outage performance of simultaneous wireless information and power transfer (SWIP- T) based three-step two-way decode-and-forward (DF) relay networks, where both power-splitting (PS) and harvest-then-forward are employed. I n particular, we derive the expressions of terminal-to-terminal (T2T) and system outage probabilities based on a Gaussian-Chebyshev quadrature approximation, and obtain the T2T and system outage capacities. The effects of various system parameters, e.g., the static power allocation ratio at the relay, symmetric PS, as well as asymmetric PS, on the outage performance of the investigated network are examined. It is shown that our derived expression for T2T outage capacity is more accurate than existing analytical results, and that the asymmetric PS achieves a higher system outage capacity than the symmetric one when the channels between the relay node and the terminal nodes have different statistic gains.
Capacity gains from transmitter and receiver cooperation are compared in a relay network where the cooperating nodes are close together. Under quasi-static phase fading, when all nodes have equal average transmit power along with full channel state i nformation (CSI), it is shown that transmitter cooperation outperforms receiver cooperation, whereas the opposite is true when power is optimally allocated among the cooperating nodes but only CSI at the receiver (CSIR) is available. When the nodes have equal power with CSIR only, cooperative schemes are shown to offer no capacity improvement over non-cooperation under the same network power constraint. When the system is under optimal power allocation with full CSI, the decode-and-forward transmitter cooperation rate is close to its cut-set capacity upper bound, and outperforms compress-and-forward receiver cooperation. Under fast Rayleigh fading in the high SNR regime, similar conclusions follow. Cooperative systems provide resilience to fading in channel magnitudes; however, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together for the decode-and-forward scheme to be capacity-achieving. Moreover, to realize capacity improvement, full CSI is necessary in transmitter cooperation, while in receiver cooperation optimal power allocation is essential.
168 - Wei-Cheng Liu , Yu-Chen Liu 2016
In this paper, we adopt the relay selection (RS) protocol proposed by Bletsas, Khisti, Reed and Lippman (2006) with Enhanced Dynamic Decode-and-Forward (EDDF) and network coding (NC) system in a two-hop two-way multi-relay network. All nodes are sing le-input single-output (SISO) and half-duplex, i.e., they cannot transmit and receive data simultaneously. The outage probability is analyzed and we show comparisons of outage probability with various scenarios under Rayleigh fading channel. Our results show that the relay selection with EDDF and network coding (RS-EDDF&NC) scheme has the best performance in the sense of outage probability upon the considered decode-and-forward (DF) relaying if there exist sufficiently relays. In addition, the performance loss is large if we select a relay at random. This shows the importance of relay selection strategies.
In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted two-way relay network, in which two users exchange information through the base station (BS) with the help of an RIS. By jointly designing the phase shifts at the RIS and beamforming matrix at the BS, our objective is to maximize the minimum signal-to-noise ratio (SNR) of the two users, under the transmit power constraint at the BS. We first consider the single-antenna BS case, and propose two algorithms to design the RIS phase shifts and the BS power amplification parameter, namely the SNR-upper-bound-maximization (SUM) method, and genetic-SNR-maximization (GSM) method. When there are multiple antennas at the BS, the optimization problem can be approximately addressed by successively solving two decoupled subproblems, one to optimize the RIS phase shifts, the other to optimize the BS beamforming matrix. The first subproblem can be solved by using SUM or GSM method, while the second subproblem can be solved by using optimized beamforming or maximum-ratio-beamforming method. The proposed algorithms have been verified through numerical results with computational complexity analysis.
Results for Gaussian relay channels typically focus on maximizing transmission rates for given locations of the source, relay and destination. We introduce an alternative perspective, where the objective is maximizing coverage for a given rate. The n ew objective captures the problem of how to deploy relays to provide a given level of service to a particular geographic area, where the relay locations become a design parameter that can be optimized. We evaluate the decode and forward (DF) and compress and forward (CF) strategies for the relay channel with respect to the new objective of maximizing coverage. When the objective is maximizing rate, different locations of the destination favor different strategies. When the objective is coverage for a given rate, and the relay is able to decode, DF is uniformly superior in that it provides coverage at any point served by CF. When the channel model is modified to include random fading, we show that the monotone ordering of coverage regions is not always maintained. While the coverage provided by DF is sensitive to changes in the location of the relay and the path loss exponent, CF exhibits a more graceful degradation with respect to such changes. The techniques used to approximate coverage regions are new and may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا