ﻻ يوجد ملخص باللغة العربية
We present a novel global representation of 3D shapes, suitable for the application of 2D CNNs. We represent 3D shapes as multi-layered height-maps (MLH) where at each grid location, we store multiple instances of height maps, thereby representing 3D shape detail that is hidden behind several layers of occlusion. We provide a novel view merging method for combining view dependent information (Eg. MLH descriptors) from multiple views. Because of the ability of using 2D CNNs, our method is highly memory efficient in terms of input resolution compared to the voxel based input. Together with MLH descriptors and our multi view merging, we achieve the state-of-the-art result in classification on ModelNet dataset.
While there has been a success in 2D human pose estimation with convolutional neural networks (CNNs), 3D human pose estimation has not been thoroughly studied. In this paper, we tackle the 3D human pose estimation task with end-to-end learning using
Automated methods for breast cancer detection have focused on 2D mammography and have largely ignored 3D digital breast tomosynthesis (DBT), which is frequently used in clinical practice. The two key challenges in developing automated methods for DBT
Anomalous activity recognition deals with identifying the patterns and events that vary from the normal stream. In a surveillance paradigm, these events range from abuse to fighting and road accidents to snatching, etc. Due to the sparse occurrence o
Background: Deep learning techniques have achieved high accuracy in image classification tasks, and there is interest in applicability to neuroimaging critical findings. This study evaluates the efficacy of 2D deep convolutional neural networks (DCNN
Traditional computer graphics rendering pipeline is designed for procedurally generating 2D quality images from 3D shapes with high performance. The non-differentiability due to discrete operations such as visibility computation makes it hard to expl