ﻻ يوجد ملخص باللغة العربية
We show that a quantum particle in $mathbb{R}^d$, for $d geq 1$, subject to a white-noise potential, moves super-ballistically in the sense that the mean square displacement $int |x|^2 langle rho(x,x,t) rangle ~dx$ grows like $t^{3}$ in any dimension. The white noise potential is Gaussian distributed with an arbitrary spatial correlation function and a delta correlation function in time. This is a known result in one dimension (see refs. Fischer, Leschke, Muller and Javannar, Kumar}. The energy of the system is also shown to increase linearly in time. We also prove that for the same white-noise potential model on the lattice $mathbb{Z}^d$, for $d geq 1$, the mean square displacement is diffusive growing like $t^{1}$. This behavior on the lattice is consistent with the diffusive behavior observed for similar models in the lattice $mathbb{Z}^d$ with a time-dependent Markovian potential (see ref. Kang, Schenker).
We investigate the persistence probability of a Brownian particle in a harmonic potential, which decays to zero at long times -- leading to an unbounded motion of the Brownian particle. We consider two functional forms for the decay of the confinemen
A procedure is presented for solving the Fokker-Planck equation with constant diffusion but non-stationary drift. It is based on the correspondence between the Fokker-Planck equation and the non-stationary Schrodinger equation. The formalism of super
We investigate the entanglement for a model of a particle moving in the lattice (many-body system). The interaction between the particle and the lattice is modelled using Hookes law. The Feynman path integral approach is applied to compute the densit
We consider solvability of the generalized reaction-diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction-diffusion equation is redu
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spect