ترغب بنشر مسار تعليمي؟ اضغط هنا

What Can (and Cant) we Do with Sparse Polynomials?

62   0   0.0 ( 0 )
 نشر من قبل Daniel Roche
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Daniel S. Roche




اسأل ChatGPT حول البحث

Simply put, a sparse polynomial is one whose zero coefficients are not explicitly stored. Such objects are ubiquitous in exact computing, and so naturally we would like to have efficient algorithms to handle them. However, with this compact storage comes new algorithmic challenges, as fast algorithms for dense polynomials may no longer be efficient. In this tutorial we examine the state of the art for sparse polynomial algorithms in three areas: arithmetic, interpolation, and factorization. The aim is to highlight recent progress both in theory and in practice, as well as opportunities for future work.



قيم البحث

اقرأ أيضاً

64 - Lilian Besson 2018
An online reinforcement learning algorithm is anytime if it does not need to know in advance the horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-anytime algorithm is the Doubling Trick. In the context o f adversarial or stochastic multi-armed bandits, the performance of an algorithm is measured by its regret, and we study two families of sequences of growing horizons (geometric and exponential) to generalize previously known results that certain doubling tricks can be used to conserve certain regret bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve (minimax) bounds in $R_T = O(sqrt{T})$ but cannot conserve (distribution-dependent) bounds in $R_T = O(log T)$. We give insights as to why exponential doubling tricks may be better, as they conserve bounds in $R_T = O(log T)$, and are close to conserving bounds in $R_T = O(sqrt{T})$.
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.
No polynomial-time algorithm is known to test whether a sparse polynomial G divides another sparse polynomial $F$. While computing the quotient Q=F quo G can be done in polynomial time with respect to the sparsities of F, G and Q, this is not yet suf ficient to get a polynomial-time divisibility test in general. Indeed, the sparsity of the quotient Q can be exponentially larger than the ones of F and G. In the favorable case where the sparsity #Q of the quotient is polynomial, the best known algorithm to compute Q has a non-linear factor #G#Q in the complexity, which is not optimal. In this work, we are interested in the two aspects of this problem. First, we propose a new randomized algorithm that computes the quotient of two sparse polynomials when the division is exact. Its complexity is quasi-linear in the sparsities of F, G and Q. Our approach relies on sparse interpolation and it works over any finite field or the ring of integers. Then, as a step toward faster divisibility testing, we provide a new polynomial-time algorithm when the divisor has a specific shape. More precisely, we reduce the problem to finding a polynomial S such that QS is sparse and testing divisibility by S can be done in polynomial time. We identify some structure patterns in the divisor G for which we can efficiently compute such a polynomial~S.
The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players and coordinated teams behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-the-art and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual).
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the superno va data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا