ﻻ يوجد ملخص باللغة العربية
We formulate an isoperimetric deformation of curves on the Minkowski plane, which is governed by the defocusing mKdV equation. Two classes of exact solutions to the defocusing mKdV equation are also presented in terms of the $tau$ functions. By using one of these classes, we construct an explicit formula for the corresponding motion of curves on the Minkowski plane even though those solutions have singular points. Another class give regular solutions to the defocusing mKdV equation. Some pictures illustrating typical dynamics of the curves are presented.
We give the following results for Pinkalls central affine curve flow on the plane: (i) a systematic and simple way to construct the known higher commuting curve flows, conservation laws, and a bi-Hamiltonian structure, (ii) Baecklund transformations
We prove that a plane domain which is almost isoperimetric (with respect to the $L^1$ metric) is close to a square whose sides are parallel to the coordinates axis. Closeness is measured either by $L^infty$ Haussdorf distance or Fraenkel asymmetry. I
We consider the punctured plane with volume density $|x|^alpha$ and perimeter density $|x|^beta$. We show that centred balls are uniquely isoperimetric for indices $(alpha,beta)$ which satisfy the conditions $alpha-beta+1>0$, $alphaleq 2beta$ and $al
Given a positive lower semi-continuous density $f$ on $mathbb{R}^2$ the weighted volume $V_f:=fmathscr{L}^2$ is defined on the $mathscr{L}^2$-measurable sets in $mathbb{R}^2$. The $f$-weighted perimeter of a set of finite perimeter $E$ in $mathbb{R}^
In this paper, we consider the evolution of spacelike graphic curves defined over a piece of hyperbola $mathscr{H}^{1}(1)$, of center at origin and radius $1$, in the $2$ dimensional Lorentz-Minkowski plane $mathbb{R}^{2}_{1}$ along an anisotropic in