ترغب بنشر مسار تعليمي؟ اضغط هنا

PolyPIC: the Polymorphic-Particle-in-Cell Method for Fluid-Kinetic Coupling

121   0   0.0 ( 0 )
 نشر من قبل Stefano Markidis Prof.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic plasma modeling. While both the fluid and kinetic PIC approaches have been successfully used to target either kinetic or fluid simulations, little was done to combine fluid and kinetic particles under the same PIC framework. This work addresses this issue by proposing a new PIC method, PolyPIC, that uses polymorphic computational particles. In this numerical scheme, particles can be either kinetic or fluid, and fluid particles can become kinetic when necessary, e.g. particles undergoing a strong acceleration. We design and implement the PolyPIC method, and test it against the Landau damping of Langmuir and ion acoustic waves, two stream instability and sheath formation. We unify the fluid and kinetic PIC methods under one common framework comprising both fluid and kinetic particles, providing a tool for adaptive fluid-kinetic coupling in plasma simulations.



قيم البحث

اقرأ أيضاً

A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981 , J. Comput. Phys., 39, 201)), which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney-Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid-structure coupling problems is examined.
Deformable elastic bodies in viscous and viscoelastic media constitute a large portion of synthetic and biological complex fluids. We present a parallelized 3D-simulation methodology which fully resolves the momentum balance in the solid and fluid do mains. An immersed boundary algorithm is exploited known as the immersed finite element method (IFEM) which accurately determines the internal forces in the solid domain. The scheme utilized has the advantages of requiring no costly re-meshing, handling finite Reynolds number, as well as incorporating non-linear viscoelasticity in the fluid domain. Our algorithm is designed for computationally efficient simulation of multi-particle suspensions with mixed structure types. The internal force calculation in the solid domain in the IFEM is coupled with a finite volume based incompressible fluid solver, both of which are massively parallelized for distributed memory architectures. We performed extensive case studies to ensure the fidelity of our algorithm. Namely, a series of single particle simulations for capsules, red blood cells, and elastic solid deformable particles were conducted in viscous and viscoelastic media. All of our results are in excellent quantitative agreement with the corresponding reported data in the literature which are based on different simulation platforms. Furthermore, we assess the accuracy of multi-particle simulation of blood suspensions (red blood cells in plasma) with and without platelets. Finally, we present the results of a novel simulation of multiple solid deformable objects in a viscoelastic medium.
Dispersion of low-density rigid particles with complex geometries is ubiquitous in both natural and industrial environments. We show that while explicit methods for coupling the incompressible Navier-Stokes equations and Newtons equations of motion a re often sufficient to solve for the motion of cylindrical particles with low density ratios, for more complex particles - such as a body with a protrusion - they become unstable. We present an implicit formulation of the coupling between rigid body dynamics and fluid dynamics within the framework of the immersed boundary projection method. Similarly to previous work on this method, the resulting matrix equation in the present approach is solved using a block-LU decomposition. Each step of the block-LU decomposition is modified to incorporate the rigid body dynamics. We show that our method achieves second-order accuracy in space and first-order in time (third-order for practical settings), only with a small additional computational cost to the original method. Our implicit coupling yields stable solution for density ratios as low as $10^{-4}$. We also consider the influence of fictitious fluid located inside the rigid bodies on the accuracy and stability of our method.
We construct Boris-type schemes for integrating the motion of charged particles in particle-in-cell (PIC) simulation. The new solvers virtually combine the 2-step Boris procedure arbitrary n times in the Lorentz-force part, and therefore we call them the multiple Boris solvers. Using Chebyshev polynomials, a one-step form of the new solvers is provided. The new solvers give n^2 times smaller errors, allow larger timesteps, and have a long-term stability. We present numerical tests of the new solvers, in comparison with other particle integrators.
The recently developed energy conserving semi-implicit method (ECsim) for PIC simulation is applied to multiple scale problems where the electron-scale physics needs to be only partially retained and the interest is on the macroscopic or ion-scale pr ocesses. Unlike hybrid methods, the ECsim is capable of providing kinetic electron information, such as wave-electron interaction (Landau damping or cyclotron resonance) and non-Maxwellian electron velocity distributions. However, like hybrid, the ECsim does not need to resolve all electron scales, allowing time steps and grid spacing orders of magnitude larger than in explicit PIC schemes. The additional advantage of the ECsim is that the stability at large scale is obtained while conserving energy exactly. Three examples are presented: ion acoustic waves, electron acoustic instability and reconnection processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا