ﻻ يوجد ملخص باللغة العربية
Dynamical Chern-Simons gravity has an interesting feature that the parity violating term exists, and the coupling is determined by a dynamical scalar field. When the spacetime has spherical symmetry, the parity violating term vanishes, and then the metric of the Schwarzschild spacetime with vanishing scalar field is an exact solution of dynamical Chern-Simons gravity. The effect of the Chern-Simons coupling appears in the study of perturbation around the Schwarzschild spacetime. Due to the parity violating term, the odd parity metric perturbation and the perturbed scalar field are coupled, and the perturbed field equations take the form of the coupled system of the Schrodinger equations. We prove linear mode stability for a generic massive scalar.
Spinning black holes in dynamical Einstein-Chern-Simons gravity are constructed by directly solving the field equations, without resorting to any perturbative expansion. This model is obtained by adding to the Einstein-Hilbert action a particular hig
The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collaboration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and nonlinear regime, thus opening a new arena to confront gene
In the present paper, we construct spontaneously scalarized rotating black hole solutions in dynamical Chern-Simons (dCS) gravity by following the scalar field evolution in the decoupling limit. For the range of parameters where the Kerr black hole b
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravi
We present a scheme for generating first-order metric perturbation initial data for an arbitrary background and source. We then apply this scheme to derive metric perturbations in order-reduced dynamical Chern-Simons gravity (dCS). In particular, we