ﻻ يوجد ملخص باللغة العربية
On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event icnu, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar txs~(3FGL J0509.4+0541), which was in an elevated gamma-ray emission state as measured by the emph{Fermi} satellite. VERITAS observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E $>$ 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+056 was detected by VERITAS with a significance of 5.8 standard deviations ($sigma$) in the full 35-hour data set. The average photon flux of the source during this period was $(8.9 pm 1.6) times 10^{-12} ; mathrm{cm}^{-2} , mathrm{s}^{-1}$, or 1.6% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of $4.8 pm 1.3$.
We present evidence that TXS 0506+056, the first plausible non-stellar neutrino source, despite appearances, is not a blazar of the BL Lac type but is instead a masquerading BL Lac, i.e., intrinsically a flat-spectrum radio quasar with hidden broad l
We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560,GeV, is well described by a power law with a spectral index of $4.33 pm 0.
While blazars have long been one of the candidates in the search for the origin of ultra-high energy cosmic rays and astrophysical neutrinos, the BL Lac object TXS 0506+056 is the first extragalactic source that is correlated with some confidence wit
The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance o
For the first time since the discovery of high-energy cosmic neutrinos by IceCube, a multimessenger campaign identified a distant gamma ray blazar, TXS 0506+056, as the source of a high-energy neutrino. The extraordinary brightness of the blazar desp