ﻻ يوجد ملخص باللغة العربية
Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this paper, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. While previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between 1.5x and 3.5x, depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of nodes in fractions of seconds.
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini
{it SimRank} is a classic measure of the similarities of nodes in a graph. Given a node $u$ in graph $G =(V, E)$, a {em single-source SimRank query} returns the SimRank similarities $s(u, v)$ between node $u$ and each node $v in V$. This type of quer
The Fenwick tree is a classical implicit data structure that stores an array in such a way that modifying an element, accessing an element, computing a prefix sum and performing a predecessor search on prefix sums all take logarithmic time. We introd
Like [1], we present an algorithm to compute the simulation of a query pattern in a graph of labeled nodes and unlabeled edges. However, our algorithm works on a compressed graph grammar, instead of on the original graph. The speed-up of our algorith
Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algori