ﻻ يوجد ملخص باللغة العربية
In this paper we study three previously unstudied variants of the online Facility Location problem, considering an intrinsic scenario when the clients and facilities are not only allowed to arrive to the system, but they can also depart at any moment. We begin with the study of a natural fully-dynamic online uncapacitated model where clients can be both added and removed. When a client arrives, then it has to be assigned either to an existing facility or to a new facility opened at the clients location. However, when a client who has been also one of the open facilities is to be removed, then our model has to allow to reconnect all clients that have been connected to that removed facility. In this model, we present an optimal O(log n_act / log log n_act)-competitive algorithm, where n_act is the number of active clients at the end of the input sequence. Next, we turn our attention to the capacitated Facility Location problem. We first note that if no deletions are allowed, then one can achieve an optimal competitive ratio of O(log n/ log log n), where n is the length of the sequence. However, when deletions are allowed, the capacitated version of the problem is significantly more challenging than the uncapacitated one. We show that still, using a more sophisticated algorithmic approach, one can obtain an online O(log m + log c log n)-competitive algorithm for the capacitated Facility Location problem in the fully dynamic model, where m is number of points in the input metric and c is the capacity of any open facility.
In the streaming model, the order of the stream can significantly affect the difficulty of a problem. A $t$-semirandom stream was introduced as an interpolation between random-order ($t=1$) and adversarial-order ($t=n$) streams where an adversary int
We first show that a better analysis of the algorithm for The Two-Sage Stochastic Facility Location Problem from Srinivasan cite{sri07} and the algorithm for The Robust Fault Tolerant Facility Location Problem from Byrka et al cite{bgs10} can render
In this paper we study the facility location problem in the online with recourse and dynamic algorithm models. In the online with recourse model, clients arrive one by one and our algorithm needs to maintain good solutions at all time steps with only
When selecting locations for a set of facilities, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given $
We study a variant of the uncapacitated facility location problem (UFL), where connection costs of clients are defined by (client specific) concave nondecreasing functions of the connection distance in the underlying metric. A special case capturing