ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon Detonation Initiation in Turbulent Electron-Degenerate Matter

112   0   0.0 ( 0 )
 نشر من قبل Robert Fisher
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type Ia supernovae (SNe Ia) play a critical role in astrophysics, yet their origin remains mysterious. A crucial physical mechanism in any SN Ia model is the initiation of the detonation front which ultimately unbinds the white dwarf progenitor and leads to the SN Ia. We demonstrate, for the first time, how a carbon detonation may arise in a realistic three-dimensional turbulent electron-degenerate flow, in a new mechanism we refer to as turbulently-driven detonation. Using both analytic estimates and three-dimensional numerical simulations, we show that strong turbulence in the distributed burning regime gives rise to intermittent turbulent dissipation which locally enhances the nuclear burning rate by orders of magnitude above the mean. This turbulent enhancement to the nuclear burning rate leads in turn to supersonic burning and a detonation front. As a result, turbulence plays a key role in preconditioning the carbon-oxygen fuel for a detonation. The turbulently-driven detonation initiation mechanism leads to a wider range of conditions for the onset of carbon detonation than previously thought possible, with important ramifications for SNe Ia models.

قيم البحث

اقرأ أيضاً

153 - F. Rincon 2015
Magnetic fields pervade the entire Universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times, up to $mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major puzzle largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context, however extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic-field growth and sustainment through an efficient turbulent dynamo instability is possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field amplification via a dynamo instability does occur in a stochastically-driven, non-relativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium (ICM) turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
In this work we report a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditi ons, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that i) amplification of magnetic field was efficient in firehose unstable turbulent regimes, but not in the mirror unstable models, ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo, iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales with pressure anisotropy ratio is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies - driven naturally in a turbulent collisionless medium, e.g. the intergalactic medium -, could efficiently amplify the magnetic field in the early Universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small scale fields ($sim$kpc scales), is however unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterwards to build up large scale coherent field structures in the long time evolution.
Investigation of the turbulent properties of solar convection is extremely important for understanding the multi-scale dynamics observed on the solar surface. In particular, recent high-resolution observations have revealed ubiquitous vortical struct ures, and numerical simulations have demonstrated links between vortex tube dynamics and magnetic field organization and have shown the importance of vortex tube interactions in the mechanisms of acoustic wave excitation on the Sun. In this paper we investigate the mechanisms of the formation of vortex tubes in highly-turbulent convective flows near the solar surface by using realistic radiative hydrodynamic LES simulations. Analysis of data from the simulations indicates two basic processes of vortex tube formation: 1) development of small-scale convective instability inside convective granules, and 2) a Kelvin-Helmholtz type instability of shearing flows in intergranular lanes. Our analysis shows that vortex stretching during these processes is a primary source of generation of small-scale vorticity on the Sun.
Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations (SolarBox code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening new perspectives for detailed joint analysis of more complex turbulent phenomena on the Sun, and possibly on other stars. In addition, using the simulations and observations we investigate effects of background magnetic field, which is concentrated in self-organized complicated structures in intergranular lanes, and find an increase of the small-scale turbulence energy and its decrease at larger scales due to magnetic field effects.
The convection that takes place in the innermost shells of massive stars plays an important role in the formation of core-collapse supernova explosions. Upon encountering the supernova shock, additional turbulence is generated, amplifying the explosi on. In this work, we study how the convective perturbations evolve during the stellar collapse. Our main aim is to establish their physical properties right before they reach the supernova shock. To this end, we solve the linearized hydrodynamics equations perturbed on a stationary background flow. The latter is approximated by the spherical transonic Bondi accretion, while the convective perturbations are modeled as a combination of entropy and vorticity waves. We follow their evolution from large radii, where convective shells are initially located, down to small radii, where they are expected to encounter the accretion shock above the proto-neutron star. Considering typical vorticity perturbations with a Mach number $sim 0.1$ and entropy perturbations with magnitude $sim 0.05 k_mathrm{b}/mathrm{baryon}$, we find that the advection of these perturbations down to the shock generates acoustic waves with a relative amplitude $delta p/gamma p lesssim 10%$, in agreement with published numerical simulations. The velocity perturbations consist of contributions from acoustic and vorticity waves with values reaching $sim 10%$ of the sound speed ahead of the shock. The perturbation amplitudes decrease with increasing $ell$ and initial radii of the convective shells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا