ترغب بنشر مسار تعليمي؟ اضغط هنا

Overview, design, and flight results from SuperBIT: a high-resolution, wide-field, visible-to-near-UV balloon-borne astronomical telescope

540   0   0.0 ( 0 )
 نشر من قبل Javier Romualdez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Balloon-borne astronomy is a unique tool that allows for a level of image stability and significantly reduced atmospheric interference without the often prohibitive cost and long development time-scale that are characteristic of space-borne facility-class instruments. The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) is a wide-field imager designed to provide 0.02 image stability over a 0.5 degree field-of-view for deep exposures within the visible-to-near-UV (300-900 um). As such, SuperBIT is a suitable platform for a wide range of balloon-borne observations, including solar and extrasolar planetary spectroscopy as well as resolved stellar populations and distant galaxies. We report on the overall payload design and instrumentation methodologies for SuperBIT as well as telescope and image stability results from two test flights. Prospects for the SuperBIT project are outlined with an emphasis on the development of a fully operational, three-month science flight from New Zealand in 2020.

قيم البحث

اقرأ أيضاً

Balloon-borne astronomy is unique in that it allows for a level of image stability, resolution, and optical backgrounds that are comparable to space-borne systems due to greatly reduced atmospheric interference, but at a fraction of the cost and over a significantly reduced development time-scale. Instruments operating within visible-to-near-UV bands ($300$ - $900$ um) can achieve a theoretical diffraction limited resolution of $0.01$ from the stratosphere ($35$ - $40$ km altitude) without the need for extensive adaptive optical systems required by ground-based systems. The {it Superpressure Balloon-borne Imaging Telescope} (SuperBIT) is a wide-field imager designed to achieve 0.02$$ stability over a 0.5$^circ$ field-of-view, for deep single exposures of up to 5 minutes. SuperBIT is thus well-suited for many astronomical observations, from solar or extrasolar planetary observations, to resolved stellar populations and distant galaxies (whether to study their morphology, evolution, or gravitational lensing by foreground mass). We report SuperBITs design and implementation, emphasizing its two-stage real-time stabilization: telescope stability to $1$ - $2$ at the telescope level (a goal surpassed during a test flight in September 2015) and image stability down to $0.02$ via an actuated tip-tilt mirror in the optical path (to be tested during a flight in 2016). The project is progressing toward a fully operational, three month flight from New Zealand by 2018
At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earths atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution , transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-IR to near-UV. It utilizes a robust active stabilization system that has consistently demonstrated a 1 sigma sky-fixed pointing stability at 48 milliarcseconds over multiple 1 hour observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at < 500 milliarcseconds and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SuperBITs performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with exceptional thermo- and opto-mechanical stability as well as tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SuperBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics and stellar dynamics.
We present the results of integration and characterization of the SPIDER instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale $B$-mode pola rization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 $mu$K$cdot$arcmin at each frequency, which is a factor of $sim$5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region.
The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a tota l power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 microns. The instrumental performance was an improvement over the 2010 BLASTPol flight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes.
Detecting the first electron pairs with nuclear emulsion allows a precise measurement of the direction of incident gamma-rays as well as their polarization. With recent innovations in emulsion scanning, emulsion analyzing capability is becoming incre asingly powerful. Presently, we are developing a balloon-borne gamma-ray telescope using nuclear emulsion. An overview and a status of our telescope is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا