ترغب بنشر مسار تعليمي؟ اضغط هنا

The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

79   0   0.0 ( 0 )
 نشر من قبل Ewan S Douglas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with SI{5.5}{micrometer} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.



قيم البحث

اقرأ أيضاً

In this paper we present HighRes: a laboratory demonstration of a 3U CubeSat with a deployable primary mirror that has the potential of achieving high-resolution imaging for Earth Observation. The system is based on a Cassegrain telescope with a segm ented primary mirror composed of 4 petals that form an effective aperture of 300 mm. The design provides diffraction limited performance over the entire field-of-view and allows for a panchromatic ground-sampling distance of less than 1 m at an altitude of 350 km. The alignment and co-phasing of the mirror segments is performed by focal plane sharpening and is validated through rigorous numerical simulations. The opto-mechanical design of the prototype and its laboratory demonstration are described and measurements from the on-board metrology sensors are presented. This data verifies that the performance of the mirror deployment and manipulation systems is sufficient for co-phasing. In addition, it is shown that the mirrors can be driven to any target position with an accuracy of 25 nm using closed-loop feedback between the mirror motors and the on-board metrology.
Gamma-Ray Integrated Detectors (GRID) mission is a student project designed to use multiple gamma-ray detectors carried by nanosatellites (CubeSats), forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-messenger astronomy era. A compact CubeSat gamma-ray detector, including its hardware and firmware, was designed and implemented for the mission. The detector employs four Gd2Al2Ga3O12 : Ce (GAGG:Ce) scintillators coupled with four silicon photomultiplier (SiPM) arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions. The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29, 2018. The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests, which were conducted in 2019.
We present the design, fabrication and initial characterization of a paddle nanocavity consisting of a suspended sub-picogram nanomechanical resonator optomechanically coupled to a photonic crystal nanocavity. The optical and mechanical properties of the paddle nanocavity can be systematically designed and optimized, and key characteristics including mechanical frequency easily tailored. Measurements under ambient conditions of a silicon paddle nanocavity demonstrate an optical mode with quality factor $Q_o$ ~ 6000 near 1550 nm, and optomechanical coupling to several mechanical resonances with frequencies $omega_m/2pi$ ~ 12-64 MHz, effective masses $m_text{eff}$ ~ 350-650 fg, and mechanical quality factors $Q_m$ ~ 44-327. Paddle nanocavities are promising for optomechanical sensing and nonlinear optomechanics experiments.
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmol ogical timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.
LEO-to-GEO intersatellite links using laser communications bring important benefits to greatly enhance applications such as downloading big amounts of data from LEO satellites by using the GEO satellite as a relay. By using this strategy, the total a vailability of the LEO satellite increases from less than 1% if the data is downloaded directly to the ground up to about 60% if the data is relayed through GEO. The main drawback of using a GEO relay is that link budget is much more difficult to close due to the much larger distance. However, this can be partially compensated by transmitting at a lower data rate, and still benefiting from the much-higher link availability when compared to LEO-to-ground downlinks, which additionally are more limited by the clouds than the relay option. After carrying out a feasibility study, NICT and the University of Tokyo started preparing a mission to demonstrate the technologies needed to perform these challenging lasercom links. Furthermore, to demonstrate the feasibility of this technique, an extremely-small satellite, i.e. a 6U CubeSat, will be used to achieve data rates as high as 10 Gbit/s between LEO and GEO. Some of the biggest challenges of this mission are the extremely low size, weight and power available in the CubeSat, the accurate pointing precision required for the lasercom link, and the difficulties of closing the link at such a high speed as 10 Gbit/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا