ﻻ يوجد ملخص باللغة العربية
Future large-scale spectroscopic astronomical surveys, e.g. Euclid, will enable the compilation of vast new catalogues of clusters and voids in the galaxy distribution. By combining the constraining power of both cluster and void number counts, such surveys could place stringent simultaneous limits on the sum of neutrino masses $M_ u$ and the dark energy equation of state $w(z) = w_0 + w_a z/(1+z)$. For minimal normal-hierarchy neutrino masses, we forecast that Euclid clusters + voids ideally could reach uncertainties $sigma(M_ u) lesssim 15$ meV, $sigma(w_0) lesssim~0.02$, $sigma(w_a) lesssim 0.07$, independent of other data. Such precision is competitive with expectations for e.g. galaxy clustering and weak lensing in future cosmological surveys, and could reject an inverted neutrino mass hierarchy at $gtrsim 99%$ confidence.
We study cosmological models with interaction between dark energy (DE) and dark matter (DM). For the interaction term $Q$ in cosmic evolution equations, there is a model-independent degeneracy-breaking (D-B) point when $Q_{1}$ (a part of $Q$) equals
We present a numerical analysis supporting the evidence that the redshift evolution of the drifting coefficient of the field cluster mass function is capable of breaking several cosmic degeneracies. This evidence is based on the data from the CoDECS
A new class of neutrino dark energy models is presented. The new models are characterized by the lack of exotic particles or couplings that violate the standard model symmetry. It is shown that these models lead to several concrete predictions for th
The tension between measurements of the Hubble constant obtained at different redshifts may provide a hint of new physics active in the relatively early universe, around the epoch of matter-radiation equality. A leading paradigm to resolve the tensio
The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the