ﻻ يوجد ملخص باللغة العربية
Let $S$ be a compact, connected, oriented surface, possibly with boundary, of negative Euler characteristic. In this article we extend Lindenstrauss-Mirzakhanis and Hamenstadts classification of locally finite mapping class group invariant ergodic measures on the space of measured laminations $mathcal{M}mathcal{L}(S)$ to the space of geodesic currents $mathcal{C}(S)$, and we discuss the homogeneous case. Moreover, we extend Lindenstrauss-Mirzakhanis classification of orbit closures to $mathcal{C}(S)$. Our argument relies on their results and on the decomposition of a current into a sum of three currents with isotopically disjoint supports: a measured lamination without closed leaves, a simple multi-curve and a current that binds its hull.
We show that for a closed surface of genus at least 5, or a surface of genus at least 2 with at least one marked point, the set of uniquely ergodic foliations and the set of cobounded foliations is path-connected and locally path-connected.
We propose a general framework for studying pseudo-Anosov homeomorphisms on translation surfaces. This new approach, among other consequences, allows us to compute the systole of the Teichmueller geodesic flow restricted to the hyperelliptic connecte
For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space $X$ and any sublinear function $kappa$, we construct a boundary for $X$, de
We proved the contractibility of the deformation space of the geodesic triangulations on a closed surface of negative curvature. This solves an open problem proposed by Connelly et al. in 1983, in the case of hyperbolic surfaces. The main part of the