ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the coupling of an individual magnetic impurity to a superconductor: quantum phase transition and transport

397   0   0.0 ( 0 )
 نشر من قبل Katharina Franke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exchange scattering at magnetic adsorbates on superconductors gives rise to Yu-Shiba-Rusinov (YSR) bound states. Depending on the strength of the exchange coupling, the magnetic moment perturbs the Cooper pair condensate only weakly, resulting in a free-spin ground state, or binds a quasiparticle in its vicinity, leading to a (partially) screened spin state. Here, we use the flexibility of Fe-porphin molecules adsorbed on a Pb(111) surface to reversibly and continuously tune between these distinct ground states. We find that the FeP moment is screened in the pristine adsorption state. Approaching the tip of a scanning tunneling microscope, we exert a sufficiently strong attractive force to tune the molecule through the quantum phase transition into the free-spin state. We ascertain and characterize the transition by investigating the transport processes as function of tip-molecule distance, exciting the YSR states by single-electron tunneling as well as (multiple) Andreev reflections.



قيم البحث

اقرأ أيضاً

We study the energy level structure of the Tavis-Cumming model applied to an ensemble of independent magnetic spins $s=1/2$ coupled to a variable number of photons. Rabi splittings are calculated and their distribution is analyzed as a functin of pho ton number $n_{rm max}$ and spin system size $N$. A sharp transition in the distribution of the Rabi frequency is found at $n_{rm max}approx N$. The width of the Rabi frequency spectrum diverges as $sqrt{N}$ at this point. For increased number of photons $n_{rm max}>N$, the Rabi frequencies converge to a value proportional to $sqrt{n_{rm max}}$. This behavior is interpreted as analogous to the classical spin resonance mechanism where the photon is treated as a classical field and one resonance peak is expected. We also present experimental data demonstrating cooperative, magnetic strong coupling between a spin system and photons, measured at room temperature. This points towards quantum computing implementation with magnetic spins, using cavity quantum-electrodynamics techniques.
We have tuned in situ the proximity effect in a single graphene layer coupled to two Pt/Ta superconducting electrodes. An annealing current through the device changed the transmission coefficient of the electrode/graphene interface, increasing the pr obability of multiple Andreev reflections. Repeated annealing steps improved the contact sufficiently for a Josephson current to be induced in graphene.
We perform a comparative study of the quantum and classical transport probabilities of low-energy quasiparticles ballistically traversing normal and Andreev two-dimensional open cavities with a Sinai-billiard shape. We focus on the dependence of the transport on the strength of an applied magnetic field $B$. With increasing field strength the classical dynamics changes from mixed to regular phase space. Averaging out the quantum fluctuations, we find an excellent agreement between the quantum and classical transport coefficients in the complete range of field strengths. This allows an overall description of the non-monotonic behavior of the average magnetoconductance in terms of the corresponding classical trajectories, thus, establishing a basic tool useful in the design and analysis of experiments.
An in-plane magnetic field applied to an Ising superconductor converts spin-singlet Cooper pairs to spin-triplet ones. In this work, we study a Josephson junction formed by two Ising superconductors that are proximitized by ferromagnetic layers. This leads to highly tunable spin-triplet pairing correlations which allow to modulate the charge and spin supercurrents through the in-plane magnetic exchange fields. For a junction with a nonmagnetic barrier, the charge current is switchable by changing the relative alignment of the in-plane exchange fields, and a $pi$-state can be realized. Furthermore, the charge and spin current-phase relations display a $phi_0$-junction behavior for a strongly spin-polarized ferromagnetic barrier.
Half a century after its discovery, the Josephson junction has become the most important nonlinear quantum electronic component at our disposal. It has helped reshape the SI system around quantum effects and is used in scores of quantum devices. By i tself, the use of Josephson junctions in the volt metrology seems to imply an exquisite understanding of the component in every aspect. Yet, surprisingly, there have been long-standing subtle issues regarding the modeling of the interaction of a junction with its electromagnetic environment. Here, we find that a Josephson junction connected to a resistor does not become insulating beyond a given value of the resistance due to a dissipative quantum phase transition, as is commonly believed. Our work clarifies how this key quantum component behaves in the presence of a dissipative environment and provides a comprehensive and consistent picture, notably regarding the treatment of its phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا