ﻻ يوجد ملخص باللغة العربية
It has been established that Coronal Mass Ejections (CMEs) may have significant impact on terrestrial magnetic field and lead to space weather events. In the present study, we selected several CMEs which are associated with filament eruptions on the Sun. We attempt to identify the presence of filament material within ICME at 1AU. We discuss how different ICMEs associated with filaments lead to moderate or major geomagnetic activity on their arrival at the Earth. Our study also highlights the difficulties in identifying the filament material at 1AU within isolated and in interacting CMEs.
We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance
For the period July 2003 to August 2010, the interplanetary coronal mass ejection (ICME) catalogue maintained by Richardson and Cane lists 106 Earth-directed events, which have been measured in-situ by plasma and field instruments onboard the ACE sat
An unexpected strong geomagnetic storm occurred on 2018 August 26, which was caused by a slow coronal mass ejection (CME) from a gradual eruption of a large quiet-region filament. We investigate the eruption and propagation characteristics of this CM
In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet,
Major flares and coronal mass ejections (CMEs) tend to originate from the compact polarity inversion lines (PILs) in the solar active regions (ARs). Recently, a scenario named as collisional shearing is proposed by citet{Chintzoglou_2019} to explain