ﻻ يوجد ملخص باللغة العربية
The two-dimensional electron gas (2DEG) at oxides interfaces and surfaces has attracted large attention in physics and research due to its unique electronic properties and possible application in optoelectronics and nanoelectronics. The origin of 2DEGes at oxide interfaces has been attributed to the well known polar catastrophe mechanism. On the other hand, recently a 2DEG was also found on a clean SrTiO3(001) surface where it is formed due to oxygen vacancies. However, these 2DEG systems have been until now found mostly on atomically perfect crystalline samples usually grown by pulsed laser deposition or molecular beam epitaxy i.e. samples which are difficult to be prepared and require specific experimental conditions. Here, we report on the fabrication of SrTiO3 thin films deposited by magnetron sputtering which is suitable for mass-production of samples adapted for nanoelectronic applications. The characterization of their structural and electronic properties was done and compared to those of SrTiO3 single crystals. XRD patterns and SEM micrography show that the deposited films are amorphous and their structure changes to polycrystalline by heating them at 900 {deg}C. Photoemission spectroscopy (XPS and UPS) was used to study the electronic properties of the films and the crystal. In both, we observe the 2DEG system at Fermi level and the formation of Ti3+ states after heating the surface at 900 {deg}C.
We studied the structural, magnetic and transport properties of LaAlO3/EuTiO3/SrTiO3 heterostructures grown by Pulsed Laser Deposition. The samples have been characterized in-situ by electron diffraction and scanning probe mi-croscopy and ex-situ by
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMO
Novel properties arising at interfaces between transition metal oxides, particularly the conductivity at the interface of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new paradigms, challenges, and opportunities in condensed matter p
Using density-functional-theory (DFT) calculations with the HSE06 hybrid functional, we accurately evaluate the critical thickness of LaAlO3 film for the intrinsic doping in LaAlO3/SrTiO3 (LAO/STO) heterstructures. The calculated critical thickness o
The structural and electronic properties of thermally reduced SrTiO3(100) single crystals have been investigated using a probe with real- and reciprocal-space sensitivity: a synchrotron radiation microsopic setup which offers the possibility of Scann