ترغب بنشر مسار تعليمي؟ اضغط هنا

Opto-mechanical designs for the HARMONI Adaptive Optics systems

231   0   0.0 ( 0 )
 نشر من قبل Kjetil Dohlen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HARMONI is a visible and near-infrared integral field spectrograph equipped with two complementary adaptive optics systems, fully integrated within the instrument. A Single Conjugate AO (SCAO) system offers high performance for a limited sky coverage and a Laser Tomographic AO (LTAO) system provides AO correction with a very high sky-coverage. While the deformable mirror performing real-time correction of the atmospheric disturbances is located within the telescope itself, the instrument contains a suite of state-of-the-art and innovative wavefront sensor systems. Laser guide star sensors (LGSS) are located at the entrance of the instrument and fed by a dichroic beam splitter, while the various natural guide star sensors for LTAO and SCAO are located close to the science focal plane. We present opto-mechanical architecture and design at PDR level for these wavefront sensor systems.



قيم البحث

اقرأ أيضاً

Liger is a next generation adaptive optics (AO) fed integral field spectrograph (IFS) and imager for the W. M. Keck Observatory. This new instrument is being designed to take advantage of the upgraded AO system provided by Keck All-Sky Precision Adap tive-optics (KAPA). Liger will provide higher spectral resolving power (R$sim$4,000-10,000), wider wavelength coverage ($sim$0.8-2.4 $mu$m), and larger fields of view than any current IFS. We present the design and analysis for a custom-made dewar chamber for characterizing the Liger opto-mechanical system. This dewar chamber is designed to test and assemble the Liger imaging camera and slicer IFS components while being adaptable for future experiments. The vacuum chamber will operate below $10^{-5}$ Torr with a cold shield that will be kept below 90 K. The dewar test chamber will be mounted to an optical vibration isolation platform and further isolated from the cryogenic and vacuum systems with bellows. The cold head and vacuums will be mounted to a custom cart that will also house the electronics and computer that interface with the experiment. This test chamber will provide an efficient means of calibrating and characterizing the Liger instrument and performing future experiments.
HARMONI is a visible and NIR integral field spectrograph, providing the E-ELTs core spectroscopic capability at first light. HARMONI will work at the diffraction limit of the E-ELT, thanks to a Classical and a Laser Tomographic AO system. In this pap er, we present the system choices that have been made for these SCAO and LTAO modules. In particular, we describe the strategy developed for the different Wave-Front Sensors: pyramid for SCAO, the LGSWFS concept, the NGSWFS path, and the truth sensor capabilities. We present first potential implementations. And we asses the first system performance.
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-Integral Field Unit (IFU) instrument, planned to be mounted on the 3.6m Devasthal optical telescope in Nainital, India. It has eight identical, fiber-fed spectrographs to disperse light coming from 16 IFUs. The spectrographs produce 2,304 spectra over a 370-740nm wavelength range simultaneously with a spectral resolution of R=1200-2400. It is composed of all-refractive, all spherical optics designed to achieve on average 26.0% throughput from the telescope to the CCD with the help of high transmission spectrograph optics, volume phase holographic grating, and graded coated e2v 2K by 4K CCD. We present the optical and opto-mechanical design of the spectrograph as well as current development status. Optics and optomechanical components for the spectrographs are being fabricated.
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical systems near their quantum ground state. We find that by using a dichotomic quantum non-demolition measurement (via, e.g., an additional circuit-QED measurement device) eithe r on the cavity or on the nanomechanical system itself, the Leggett-Garg inequality is violated. We argue that only measurements on the mechanical system itself give a truly unambigous violation of the Leggett-Garg inequality for the mechanical system. In this case, a violation of the Leggett-Garg inequality indicates physics beyond that of macroscopic realism is occurring in the mechanical system. Finally, we discuss the difficulties in using unbound non-dichotomic observables with the Leggett-Garg inequality.
In tomographic adaptive-optics (AO) systems, errors due to tomographic wave-front reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic wave-front reconstruction method to reduce the tomographic error by using the measurements from both the current and the previous time-steps simultaneously. We further outline the method to feed the reconstructor with both wind speed and direction of each turbulence layer. An end-to-end numerical simulation, assuming a multi-object AO (MOAO) system on a 30 m aperture telescope, shows that the multi time-step reconstruction increases the Strehl ratio (SR) over a scientific FoV of 10 arcminutes in diameter by a factor of 1.5--1.8 when compared to the classical tomographic reconstructor, depending on the guide star asterism and with perfect knowledge of wind speeds and directions. We also evaluate the multi time-step reconstruction method and the wind estimation method on the RAVEN demonstrator under laboratory setting conditions. The wind speeds and directions at multiple atmospheric layers are measured successfully in the laboratory experiment by our wind estimation method with errors below 2 ms. With these wind estimates, the multi time-step reconstructor increases the SR value by a factor of 1.2--1.5, which is consistent with a prediction from end-to-end numerical simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا