ﻻ يوجد ملخص باللغة العربية
In this paper we construct a new family of lattice packings for superballs in three dimensions (unit balls for the $l^p_3$ norm) with $p in (1, 1.58]$. We conjecture that the family also exists for $p in (1.58, log_2 3 = 1.5849625ldots]$. Like in the densest lattice packing of regular octahedra, each superball in our family of lattice packings has $14$ neighbors.
Suppose one has a collection of disks of various sizes with disjoint interiors, a packing, in the plane, and suppose the ratio of the smallest radius divided by the largest radius lies between $1$ and $q$. In his 1964 book textit{Regular Figures} (MR
In this paper we determine new upper bounds for the maximal density of translative packings of superballs in three dimensions (unit balls for the $l^p_3$-norm) and of Platonic and Archimedean solids having tetrahedral symmetry. Thereby, we improve Zo
We generalize the classical notion of packing a set by balls with identical radii to the case where the radii may be different. The largest number of such balls that fit inside the set without overlapping is called its {em non-uniform packing number}
Understanding granular materials aging poses a substantial challenge: Grain contacts form networks with complex topologies, and granular flow is far from equilibrium. In this letter, we experimentally measure a three-dimensional granular systems reve
A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in $mathbb{R}^3$ is not gr