ترغب بنشر مسار تعليمي؟ اضغط هنا

Host galaxies of SNe Ic-BL with and without long gamma-ray bursts

139   0   0.0 ( 0 )
 نشر من قبل Jure Japelj
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broad-line Ic supernovae (SNe Ic-BL) are a very rare class of core-collapse supernovae exhibiting high ejecta velocities and high kinetic energies. They are the only type of SNe that accompany long gamma-ray burst (GRB) explosions. Systematic differences found in the spectra of SNe Ic-BL with and without GRBs (GRB-SNe and SNe Ic-BL, respectively) suggest that either the progenitor or/and explosion mechanism of SNe Ic-BL with and without a GRB differ, or the difference could be only due to the viewing angle of the observer with respect to the orientation of the collimated explosion. We present the systematic comparison of the host galaxies of broad-lined SNe Ic with and without a detected GRB, the latter being detected in untargeted surveys, with the aim to find out whether there are any systematic differences between the environments in which these two classes of SNe preferentially explode. We study photometric properties of the host galaxies of a sample of 8 GRB-SNe and a sample of 28 SNe Ic-BL at z < 0.2. The two galaxy samples have indistinguishable luminosity and proper size distribution. We find indications that GRB-SNe on average occur closer to the centres of their host galaxies, i.e. the samples have a different distribution of projected offsets, normalized by the galaxy sizes. In addition we compare gas-phase metallicities of the GRB-SNe and SNe Ic-BL host samples and find that a larger fraction of super-solar metallicity hosts are found among the SNe Ic-BL without a GRB. Our results are indicative of a genuine difference between the two types of explosions and suggest that the viewing angle is not the main source of difference in the spectra of the two classes. We discuss the implications our results have on our understanding of progenitors of SNe Ic-BL with and without a GRB.



قيم البحث

اقرأ أيضاً

161 - Emily M. Levesque 2013
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive stars. The host galaxies of LGRBs are an excellent means of probing the environments and populations that produce their unusual progenitors. In addition, these same young stellar progenitors makes LGRBs and their host galaxies valuable potentially powerful tracers of star formation and metallicity at high redshifts. However, properly utilizing LGRBs as probes of the early universe requires a thorough understanding of their formation and the host environments that they sample. This review looks back at some of the recent work on LGRB host galaxies that has advanced our understanding of these events and their cosmological applications, and considers the many new questions that we are poised to pursue in the coming years.
203 - A. Lapi , N. Kawakatu (3 2008
Motivated by the recent observational and theoretical evidence that long Gamma-Ray Bursts (GRBs) are likely associated with low metallicity, rapidly rotating massive stars, we examine the cosmological star formation rate (SFR) below a critical metall icity Z_crit Z_sun/10 - Z_sun/5, to estimate the event rate of high-redshift long GRB progenitors. To this purpose, we exploit a galaxy formation scenario already successfully tested on a wealth of observational data on (proto)spheroids, Lyman break galaxies, Lyman alpha emitters, submm galaxies, quasars, and local early-type galaxies. We find that the predicted rate of long GRBs amounts to about 300 events/yr/sr, of which about 30 per cent occur at z>~6. Correspondingly, the GRB number counts well agree with the bright SWIFT data, without the need for an intrinsic luminosity evolution. Moreover, the above framework enables us to predict properties of the GRB host galaxies. Most GRBs are associated with low mass galaxy halos M_H<~10^11 M_sun, and effectively trace the formation of small galaxies in such halos. The hosts are young, with age smaller than 5*10^7 yr, gas rich, but poorly extincted (A_V<~0.1) because of their chemical immaturity; this also implies high specific SFR and quite extreme alpha-enhancement. Only the minority of hosts residing in large halos with M_H>~10^12 M_sun have larger extinction (A_V~0.7-1), SFRs exceeding 100 M_sun/yr and can be detected at submm wavelengths. Most of the hosts have UV magnitudes in the range -20 <~M_1350<~ -16, and Lyman alpha luminosity in the range 2*10^40 <~L_Lya<~2*10^42 erg/s. GRB hosts are thus tracing the faint end of the luminosity function of Lyman break galaxies and Lyman alpha emitters.
144 - Maryam Modjaz 2015
We present the first systematic investigation of spectral properties of 17 Type Ic Supernovae (SNe Ic), 10 broad-lined SNe Ic (SNe Ic-bl) without observed Gamma-Ray Bursts (GRBs) and 11 SNe Ic-bl with GRBs (SN-GRBs) as a function of time in order to probe their explosion conditions and progenitors. We analyze a total of 407 spectra, which were drawn from published spectra of individual SNe as well as from the densely time-sampled spectra data of Modjaz et al. (2014). In order to quantify the diversity of the SN spectra as a function of SN subtype, we construct average spectra of SNe Ic, SNe Ic-bl without GRBs and SNe Ic-bl with GRBs. We find that SN 1994I is not a typical SN Ic, in contrast to common belief, while the spectra of SN 1998bw/GRB 980425 are representative of mean spectra of SNe Ic-bl. We measure the ejecta absorption and width velocities using a new method described here and find that SNe Ic-bl with GRBs, on average, have quantifiably higher absorption velocities, as well as broader line widths than SNe without observed GRBs. In addition, we search for correlations between SN-GRB spectral properties and the energies of their accompanying GRBs. Finally, we show that the absence of clear He lines in optical spectra of SNe Ic-bl, and in particular of SN-GRBs, is not due to them being too smeared out due to the high velocities present in the ejecta. This implies that the progenitor stars of SN-GRBs are probably He-free, in addition to being H-free, which puts strong constraints on the stellar evolutionary paths needed to produce such SN-GRB progenitors at the observed low metallicities.
Using multiwavelength observations of radio afterglows, we confirm the hypothesis that the flux density of gamma-ray bursts (GRBs) at a fixed observing frequency is invariable when the distance of the GRBs increases, which means the detection rate wi ll be approximately independent of redshift. We study this behavior theoretically and find that it can be well explained by the standard forward shock model involving a thin shell expanding in either a homogeneous interstellar medium (ISM) or a wind environment. We also found that short GRBs and supernova-associated GRBs, which are at relatively smaller distances, marginally match the flux-redshift relationship and they could be outliers. We rule out the assumption that the medium density evolves with redshift as $npropto(1+z)^4$ from the current measurements of $n$ and $z$ for short and long GRBs. In addition, the possible dependence of host flux on the redshift is also investigated. We find that a similar redshift independence of the flux exists for host galaxies as well, which implies that the detection rate of radio hosts might also be independent of the redshift. It is also hinted that most radio hosts have the spectral indices ranging from $beta_hsimeq-1$ to 2.5 in statistics. Finally, we predict the detection rates of radio afterglows by the next-generation radio telescopes such as the Five-hundred meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA).
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of source s, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا