ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution Power Network Reconfiguration in the Smart Grid

62   0   0.0 ( 0 )
 نشر من قبل Joberto Martins Prof. Dr.
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The power network reconfiguration algorithm with an R modeling approach evaluates its behavior in computing new reconfiguration topologies for the power grid in the context of the Smart Grid. The power distribution network modelling with the R language is used to represent the network and support computation of different algorithm configurations for the evaluation of new reconfiguration topologies. This work presents a reconfiguration solution of distribution networks, with a construction of an algorithm that receiving the network configuration data and the nodal measurements and from these data build a radial network, after this and using a branch exchange algorithm And verifying the best configuration of the network through artificial intelligence, so that there are no unnecessary changes during the operation, and applied an algorithm that analyses the load levels, to suggest changes in the network.



قيم البحث

اقرأ أيضاً

185 - Hongjian Sun , Bo Tan , Jing Jiang 2013
Wireless technologies can support a broad range of smart grid applications including advanced metering infrastructure (AMI) and demand response (DR). However, there are many formidable challenges when wireless technologies are applied to the smart gi rd, e.g., the tradeoffs between wireless coverage and capacity, the high reliability requirement for communication, and limited spectral resources. Relaying has emerged as one of the most promising candidate solutions for addressing these issues. In this article, an introduction to various relaying strategies is presented, together with a discussion of how to improve spectral efficiency and coverage in relay-based information and communications technology (ICT) infrastructure for smart grid applications. Special attention is paid to the use of unidirectional relaying, collaborative beamforming, and bidirectional relaying strategies.
In the next few years, smart farming will reach each and every nook of the world. The prospects of using unmanned aerial vehicles (UAV) for smart farming are immense. However, the cost and the ease in controlling UAVs for smart farming might play an important role for motivating farmers to use UAVs in farming. Mostly, UAVs are controlled by remote controllers using radio waves. There are several technologies such as WiFi or ZigBee that are also used for controlling UAVs. However, Smart Bluetooth (also referred to as Bluetooth Low Energy) is a wireless technology used to transfer data over short distances. Bluetooth smart is cheaper than other technologies and has the advantage of being available on every smart phone. Farmers can use any smart phone to operate their respective UAVs along with Bluetooth Smart enabled agricultural sensors in the future. However, certain requirements and challenges need to be addressed before UAVs can be operated for smart agriculture-related applications. Hence, in this article, an attempt has been made to explore the types of sensors suitable for smart farming, potential requirements and challenges for operating UAVs in smart agriculture. We have also identified the future applications of using UAVs in smart farming.
68 - Benjamin Donnot 2019
We propose a novel neural network embedding approach to model power transmission grids, in which high voltage lines are disconnected and reconnected with one-another from time to time, either accidentally or willfully. We call our architeture LEAP ne t, for Latent Encoding of Atypical Perturbation. Our method implements a form of transfer learning, permitting to train on a few source domains, then generalize to new target domains, without learning on any example of that domain. We evaluate the viability of this technique to rapidly assess cu-rative actions that human operators take in emergency situations, using real historical data, from the French high voltage power grid.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are base d on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
Recent advances in power system State Estimation (SE) have included equivalent circuit models for representing measurement data that allows incorporation of both PMU and RTU measurements within the state estimator. In this paper, we introduce a proba bilistic framework with a new RTU model that renders the complete SE problem linear while not affecting its accuracy. It is demonstrated that the probabilistic state of a system can be efficiently and accurately estimated not only with the uncertainties from the measurement data, but also while including variations from transmission network models. To demonstrate accuracy and scalability we present probabilistic state estimation results for the 82k test case that represents the transmission level grid of the entire USA. It is shown that the estimated state distributions include the true grid state, while their mean exactly corresponds to the estimated deterministic state obtained from the nonlinear state estimator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا