ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature and chemical abundances of a sample of Lyman-$alpha$ emitter objects at high redshift

270   0   0.0 ( 0 )
 نشر من قبل Oli Luiz Dors Jr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We built a grid of photoionization models and compiled already available observational emission line intensities ($rm 1000 : < : lambda(AA) : < : 2000$) of confirmed star formation regions and Active Galactic Nucleus (AGNs) in order to classify five Ly$alpha$ emitter (LAE) objects at high redshift $(5.7 : < : z : < :7.2)$. We selected objects for which at least one metal emission-line was measured. The resulting sample is composed by the objects RXCJ2248.7-4431-ID3, HSCJ233408+004403, COSY, A1703-zd6, and CR7 (clump C). The photoionization models were built assuming a Power Law (associated with the presence of an AGN), a Direct Collapse Black Hole (DCBH), and Population II stars for the ionizing source. The resulting models were then compared with observational emission-line ratios in six diagnostic diagrams to produce a spectral classification of the sample. We found that CR7 (clump C), HSCJ233408+004403 and COSY probably have a non thermal ionizing source (AGN or DCBH) while the RXC J2248.7-4431-ID3 and A1703-zd6 seem to host a stellar cluster. Detailed photoionization models were constructed to reproduce observational emission line ratios of the sample of LAEs, and to derive chemical abundances and number of ionizing photons $Q(rm H)$ of these objects. From these models, we found metallicities in the range $(Z/Z_{odot})=0.1-0.5$ and $log Q(rm H) : > : 53$. Values for C/O abundance ratio derived for the LAEs seem to be consistent with those derived for local star forming objects with similar metallicities, while an overabundance of N/O was found for most of the LAEs.



قيم البحث

اقرأ أيضاً

We present a flux-limited sample of $zsim0.3$ Ly$alpha$ emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism spectroscopic data. The published GALEX $zsim0.3$ LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly$alpha$ emission line directly from our sample. We examine the evolution of these quantities from $zsim0.3$ to $2.2$ and find that the EW distribution shows little evidence for evolution over this redshift range. As shown by previous studies, the Ly$alpha$ luminosity density from star-forming galaxies declines rapidly with declining redshift. However, we find that the decline in Ly$alpha$ luminosity density from $z=2.2$ to $z=0.3$ may simply mirror the decline seen in the H$alpha$ luminosity density from $z=2.2$ to $z=0.4$, implying little change in the volumetric Ly$alpha$ escape fraction. Finally, we show that the observed Ly$alpha$ luminosity density from AGNs is comparable to the observed Ly$alpha$ luminosity density from star-forming galaxies at $z=0.3$. We suggest that this significant contribution from AGNs to the total observed Ly$alpha$ luminosity density persists out to $zsim2.2$.
During the course of our deep optical imaging survey for Ly alpha emitters at z approximately 5.7 in the field around the z=5.74 quasar SDSSp J104433.04-012502.2, we have found a candidate strong emission-line source. Follow-up optical spectroscopy s hows that the emission line profile of this object is asymmetric, showing excess red-wing emission. These properties are consistent with an identification of Ly alpha emission at a redshift of z=5.687 +/- 0.002. The observed broad line width, Delta V_{FWHM} ~= 340 km s^{-1} and excess red-wing emission also suggest that this object hosts a galactic superwind.
Protoclusters, the progenitors of the most massive structures in the Universe, have been identified at redshifts of up to 6.6. Besides exploring early structure formation, searching for protoclusters at even higher redshifts is particularly useful to probe the reionization. Here we report the discovery of the protocluster LAGER-z7OD1 at a redshift of 6.93, when the Universe was only 770 million years old and could be experiencing rapid evolution of the neutral hydrogen fraction in the intergalactic medium. The protocluster is identified by an overdensity of 6 times the average galaxy density, and with 21 narrowband selected Lyman-$alpha$ galaxies, among which 16 have been spectroscopically confirmed. At redshifts similar to or above this record, smaller protogroups with fewer members have been reported. LAGER-z7OD1 shows an elongated shape and consists of two subprotoclusters, which would have merged into one massive cluster with a present-day mass of $3.7 times 10^{15}$ solar masses. The total volume of the ionized bubbles generated by its member galaxies is found to be comparable to the volume of the protocluster itself, indicating that we are witnessing the merging of the individual bubbles and that the intergalactic medium within the protocluster is almost fully ionized. LAGER-z7OD1 thus provides a unique natural laboratory to investigate the reionization process.
447 - Daniel Schaerer 2014
I provide an overview about star-forming galaxies at high redshift and their physical properties. Starting from the populations of Ly-$alpha$ emitters and Lyman break galaxies, I summarize their common features and distinction. Then I summarize recen t insight onto their physical properties gained from SED models including nebular emission, and various implications from these studies on the properties of star-formation at high redshift. Finally, I present new results and an overview on the dust content and UV attenuation of $z>6$ galaxies obtained from IRAM and ALMA observations.
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, an d an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا