ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability in IC5070: two young stars with deep recurring eclipses

72   0   0.0 ( 0 )
 نشر من قبل Dirk Froebrich
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two low-mass YSOs in IC5070 (V1490Cyg, V1706Cyg) with deep recurring eclipses.

قيم البحث

اقرأ أيضاً

Studying rotational variability of young stars is enabling us to investigate a multitude of properties of young star-disk systems. We utilise high cadence, multi-wavelength optical time series data from the Hunting Outbursting Young Stars citizen sci ence project to identify periodic variables in the Pelican Nebula (IC5070). A double blind study using nine different period-finding algorithms was conducted and a sample of 59 periodic variables was identified. We find that a combination of four period finding algorithms can achieve a completeness of 85% and a contamination of 30% in identifying periods in inhomogeneous data sets. The best performing methods are periodograms that rely on fitting a sine curve. Utilising GaiaEDR3 data, we have identified an unbiased sample of 40 periodic YSOs, without using any colour or magnitude selections. With a 98.9% probability we can exclude a homogeneous YSO period distribution. Instead we find a bi-modal distribution with peaks at three and eight days. The sample has a disk fraction of 50%, and its statistical properties are in agreement with other similarly aged YSOs populations. In particular, we confirm that the presence of the disk is linked to predominantly slow rotation and find a probability of 4.8$times$10$^{-3}$ that the observed relation between period and presence of a disk has occurred by chance. In our sample of periodic variables, we also find pulsating giants, an eclipsing binary, and potential YSOs in the foreground of IC5070.
Young stars exhibit short-term photometric variability caused by mass accretion events from circumstellar disks, the presence of dusty warps within the inner disks, starspots that rotate across the stellar surfaces, and flares. Long-term variability also occurs owing to starspot longevity and cycles, and from changes in stellar angular momenta and activity as the stars age. We propose to observe the Carina star-forming region in different bands with a cadence of 30 minutes every night for one week per year to clarify the nature of both the short-term and long-term variability of the thousands of young stars in this region. By obtaining well-sampled multicolor lightcurves of this dense young cluster, LSST would acquire the first statistically significant data on how these objects vary on both short and long timescales. This information will allow us to relate the observed variability to stellar properties such as mass, age, binarity, and to environmental properties such as location within or exterior to the H II region, and to the presence or absence of a circumstellar disk.
We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using 3 seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photomet ry on 9,200 stars down to J=17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main sequence stars, including 24 which are newly discovered. We analyze those stars and find the NIR excesses are significantly variable. All 9,200 stars were monitored for photometric variability; among the field star population, about 160 exhibited near-infrared variability (1.7% of the sample). Of the 30 YSOs (young stellar objects), 28 of them (93%) are variable at a significant level. 25 of the 30 YSOs have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since 2MASS observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short timescales than is attributable to rotation alone or captured in static disk models.
We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 +- 0.5 Myr), dense, massive clu ster for which we will determine accurate fundamental parameters with subsequent spectroscopy. Given that the Arches cluster contains more than 200 Wolf-Rayet and O-type stars, it provides a rare opportunity to determine parameters for some of the most massive stars in the Galaxy.
We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 $pm$ 0.5 Myr), dense, massive c luster for which we will determine accurate fundamental parameters with subsequent spectroscopy. Given that the Arches cluster contains more than 200 Wolf-Rayet and O-type stars, it provides a rare opportunity to determine parameters for some of the most massive stars in the Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا