ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation between unidirectional spin Hall magnetoresistance and spin current-driven magnon generation

256   0   0.0 ( 0 )
 نشر من قبل Vladislav Demidov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform electronic measurements of unidirectional spin Hall magnetoresistance (USMR) in a Permalloy/Pt bilayer, in conjunction with magneto-optical Brillouin light spectroscopy of spin current-driven magnon population. We show that the current dependence of USMR closely follows the dipolar magnon density, and that both dependencies exhibit the same scaling over a large temperature range of 80-400 K. These findings demonstrate a close relationship between spin current-driven magnon generation and USMR, and indicate that the latter is likely dominated by the dipolar magnons.

قيم البحث

اقرأ أيضاً

We conducted a systematic angular dependence study of nonlinear magnetoresistance in NiFe/Pt bilayers at variable temperature and field using the Wheatstone bridge method. We successfully disentangled magnon magnetoresistance from other types of magn etoresistances based on their different temperature and field dependences. Both the spin Hall/anisotropic and magnon magnetoresistances contain sine phi and sine 3 phi components with phi the angle between current and magnetization, but they exhibit different field and temperature dependence. The competition between different types of magnetoresistances leads to a sign reversal of sine 3 phi component at a specific magnetic field, which was not reported previously. The phenomenological model developed is able to account for the experimental results for both NiFe/Pt and NiFe/Ta samples with different layer thicknesses. Our results demonstrate the importance of disentangling different types of magnetoresistances when characterizing the charge-spin interconversion process in magnetic heterostructures.
Spin-dependent transport phenomena due to relativistic spin-orbit coupling and broken space-inversion symmetry are often difficult to interpret microscopically, in particular when occurring at surfaces or interfaces. Here we present a theoretical and experimental study of spin-orbit torque and unidirectional magnetoresistance in a model room-temperature ferromagnet NiMnSb with inversion asymmetry in the bulk of this half-heusler crystal. Besides the angular dependence on magnetization, the competition of Rashba and Dresselhaus-like spin-orbit couplings results in the dependence of these effects on the crystal direction of the applied electric field. The phenomenology that we observe highlights potential inapplicability of commonly considered approaches for interpreting experiments. We point out that, in general, there is no direct link between the current-induced non-equilibrium spin polarization inferred from the measured spin-orbit torque and the unidirectional magnetiresistance. We also emphasize that the unidirectional magnetoresistance has not only longitudinal but also transverse components in the electric field -- current indices which complicates its separation from the thermoelectric contributions to the detected signals in common experimental techniques. We use the theoretical results to analyze our measurements of the on-resonance and off-resonance mixing signals in microbar devices fabricated from an epitaxial NiMnSb film along different crystal directions. Based on the analysis we extract an experimental estimate of the unidirectional magnetoresistance in NiMnSb.
87 - Yang Lv , James Kally , Tao Liu 2018
Thanks to its unique symmetry, the unidirectional spin Hall and Rashba-Edelstein magnetoresistance (USRMR) is of great fundamental and practical interest, particularly in the context of reading magnetization states in two-terminal spin-orbit torque s witching memory and logic devices. Recent studies show that topological insulators could improve USRMR amplitude. However, the topological insulator device configurations studied so far in this context, namely ferromagnetic metal/topological insulator bilayers and magnetically doped topological insulators, suffer from current shunting by the metallic layer and low Curie temperature, respectively. Here, we report large USRMR in a new material category - magnetic insulator/topological insulator bi-layered heterostructures. Such structures exhibit USRMR that is about an order of magnitude larger than the highest values reported so far in all-metal Ta/Co bilayers. We also demonstrate current-induced magnetization switching aided by an Oersted field, and electrical read out by the USRMR, as a prototype memory device.
We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a non-equilibrium proximity phenomenon. We compute the SMR in F$|$N and F$|$N$|$F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N$|$F bilayers. For F$|$N$|$F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.
We show experimentally that the spin current generated by the spin Hall effect drives the magnon gas in a ferromagnet into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterize d either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا