ترغب بنشر مسار تعليمي؟ اضغط هنا

Design Development for the Beam Dump Facility Target Complex at CERN

64   0   0.0 ( 0 )
 نشر من قبل Marco Calviani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CERN has launched a study phase to evaluate the feasibility of a new high-intensity beam dump facility at the CERN Super Proton Synchrotron accelerator with the primary goal of exploring Hidden Sector models and searching for Light Dark Matter, but which also offers opportunities for other fixed target flavour physics programs such as rare tau lepton decays and tau neutrino studies. The new facility will require - among other infrastructure - a target complex in which a dense target/dump will be installed, capable of absorbing the entire energy of the beam extracted from the SPS accelerator. In theory, the target/dump could produce very weakly interacting particles, to be investigated by a suite of particle detectors to be located downstream of the target complex. As part of the study, a development design of the target complex has been produced, taking into account the handling and remote handling operations needed through the lifetime of the facility. Two different handling concepts have been studied and both resulting designs are presented.

قيم البحث

اقرأ أيضاً

The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experim ent. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system.
The Beam Dump Facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for Light Dark Matter and Hidden Sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the Beam Dump Facility target was achieved during the prototype tests, which will be complemented by a Post Irradiation Examination campaign during 2020.
127 - Raffaele Esposito 2021
The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horiz ontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERNs Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermo-mechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.
151 - C. Ahdida , R.G. Alia , G. Arduini 2019
The proposed Beam Dump Facility (BDF) is foreseen to be located at the North Area of the SPS. It is designed to be able to serve both beam dump like and fixed target experiments. The SPS and the new facility would offer unique possibilities to enter a new era of exploration at the intensity frontier. Possible options include searches for very weakly interacting particles predicted by Hidden Sector models, and flavour physics measurements. In the first instance, exploitation of the facility, in beam dump mode, is envisaged to be for the Search for Hidden Particle (SHiP) experiment. Following the first evaluation of the BDF in 2014-2016, CERN management launched a Comprehensive Design Study over three years for the facility. The BDF study team has since executed an in-depth feasibility study of proton delivery to target, the target complex, and the underground experimental area, including prototyping of key sub-systems and evaluations of the radiological aspects and safety. A first iteration of detailed integration and civil engineering studies have been performed in order to produce a realistic schedule and cost. This document gives a detailed overview of the proposed facility together with the results of the studies, and draws up a possible road map for a three-year Technical Design Report phase, followed by a 5 to 6 year construction phase.
The design of a primary electron beam facility at CERN is described. The study has been carried out within the framework of the wider Physics Beyond Colliders study. It re-enables the Super Proton Synchrotron (SPS) as an electron accelerator, and lev erages the development invested in Compact Linear Collider (CLIC) technology for its injector and as an accelerator research and development infrastructure. The facility would be relevant for several of the key priorities in the 2020 update of the European Strategy for Particle Physics, such as an electron-positron Higgs factory, accelerator R&D, dark sector physics, and neutrino physics. In addition, it could serve experiments in nuclear physics. The electron beam delivered by this facility would provide access to light dark matter production significantly beyond the targets predicted by a thermal dark matter origin, and for natures of dark matter particles that are not accessible by direct detection experiments. It would also enable electro-nuclear measurements crucial for precise modelling the energy dependence of neutrino-nucleus interactions, which is needed to precisely measure neutrino oscillations as a function of energy. The implementation of the facility is the natural next step in the development of X-band high-gradient acceleration technology, a key technology for compact and cost-effective electron/positron linacs. It would also become the only facility with multi-GeV drive bunches and truly independent electron witness bunches for plasma wakefield acceleration. A second phase capable to deliver positron witness bunches would make it a complete facility for plasma wakefield collider studies. [...]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا